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In order to improve the working efficiency of automated guided vehicles (AGVs) and the processing efficiency of fulfilling orders
in intelligent warehouses, a novel parallel ant colony optimization algorithm for warehouse path planning is proposed. 0rough
the interaction of pheromones among multiple subcolonies, the coevolution of multiple subcolonies is realized and the op-
erational capability of the algorithm is improved. 0en, a multiobjective function with the object of the shortest path and the
minimum number of turns of the AGV is established. And the path satisfying this objective function is obtained by the proposed
algorithm. In addition, the path is further smoothed by reducing the number of intermediate nodes. 0e results show that the
stability and convergence rate of the algorithm are faster and more stable, compared to other algorithms, in generating paths for
different complexity maps. 0e smoothing treatment of the path significantly reduces the number of turns and the path length in
the AGV driving process.

1. Introduction

Nowadays, automated guided vehicles (AGVs) are often
used to move goods in common logistics storage spaces
such as intelligent warehouses and automated wharfs.
AGVs are required to search for a best path in a given
working environment according to certain goals (e.g.,
shortest time, shortest energy consumption, shortest
distance). A reasonable AGV driving path not only im-
proves the goods turnover rate and order fulfillment ef-
ficiency of the warehouse, but also makes the AGV more
stable during driving. 0erefore, the path planning of
AGVs in intelligent warehouses is mainly studied in this
paper.

In path planning, the goal is to find a collision-free path
from the starting position to the target position while
optimizing one or more objectives (e.g., path length,
smoothness, security) with a reasonable method [1]. 0e
applications of path planning are very extensive. Scholars
have reported results on mobile robot path planning using a

variety of approaches including the A∗ algorithm [2],
Dijkstra’s algorithm [3, 4], ant colony optimization [5, 6],
genetic algorithm [7, 8], particle swarm optimization [9],
fuzzy control algorithm [10], and other intelligent opti-
mization algorithms. Each algorithm has its own advan-
tages and limitations under different performance
indicators.

0e ant colony optimization (ACO) algorithm, initially
proposed by Marco Dorigo, is a metaheuristic approach
inspired by ants’ foraging behavior and used to solve the
traveling salesman problem (TSP) [11]. Later, various
improved ant colony algorithms have been proposed and
applied to the path planning problem. 0e ACO algorithm
has the advantages of strong robustness, excellent dis-
tributed computer mechanism, and easy integration with
other methods [12]; it is a commonly used method to solve
the path planning problem. 0e ACO algorithm adopts a
positive feedback approach in which a roulette selection is
used to choose the direction of the ants. 0e algorithm
converges when the iterations reach a certain number of
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times. However, in this positive feedback algorithm,
achieving fast convergence and avoiding premature stag-
nation are contradictory. Many scholars are seeking the
balance between the two problems. 0e max–min ant
system (MMAS) proposed in [13] avoids the stagnation of
the algorithm to some extent by restricting the upper and
lower limits of pheromones on the path. However, when
the solution is sparsely distributed, the convergence speed
slows down. To address the convergence problem, nu-
merous solutions have been proposed. 0e algorithm
proposed in [14] divides a total ant colony into several
subcolonies. Each ant colony uses the MMAS algorithm
and completes a multicolony coevolution through a mi-
gration operator connection; this improves the conver-
gence speed of the algorithm. However, because of too
much dependence on the elite ants, the pheromone local
growth is too fast and the solving ability is reduced. An
alternative algorithm [15] reconstructs the heuristic in-
formation of an ant colony by utilizing the potential field
force in the artificial potential field force method. 0e
authors propose an improved potential field force ant
colony algorithm. 0e convergence speed of the algorithm
is improved, but the algorithm can readily stagnate pre-
maturely. According to the zero point theorem, [16] assigns
different initial pheromones to different raster positions,
which reduces the blindness of the ant colony search and
improves the search capability of the algorithm. However,
the algorithm is too dependent on the initial pheromone
distribution and is not adaptable to complex maps. 0e
algorithm proposed in [17] firstly initializes pheromones of
an ant colony with random values and then performs a
crossover mutation on pheromones in the later stage. 0is
improves the search capability of the algorithm but reduces
the convergence speed.

0e previous work about improving the operation effect
of the ACO algorithm focused on the intervention of certain
parameters to change the node selection mode of ants in the
population or to influence the pheromone updating mode of
the ant population. Less consideration has been given to the
pheromone interactions between multiple ant colonies and
the cogrowth of multiple subcolonies in the iteration pro-
cess, so as to improve the overall path search capability of the
ant colonies by using the search capability of the subcolonies
themselves. Furthermore, most of the relevant research only
pursues the shortest path of the AGV and does not consider
the problem that the AGV is not smooth enough due to too
many turns in the operation process. 0erefore, research is
needed to effectively reduce the number of turns in the AGV
driving process.

Based on the above analysis, a warehouse map model is
firstly built and a novel algorithm is proposed to generate the
shortest AGV path with the least number of turns. It is a
parallel-ranking ant colony optimization (P-RACO) algo-
rithm. Compared with other algorithms, it is proven that the
algorithm has faster convergence speed and better stability.
0en, on the basis of the first stage of the path generation, the
algorithm proved to be faster and more stable. By reducing
the intermediate nodes, the path is smoothed, the number of

turns and the length of the path are reduced, and the actual
driving path of AGV is more stable and feasible.

2. Problem Description and Model Building

2.1. Problem Description and Assumptions. In an intelligent
warehouse, when receiving the task, an AGV is required to
begin from the starting point, bypassing barriers to
complete the order. 0erefore, a shortest path with
minimum number of turns is needed to ensure the effi-
ciency of the warehouse operation and the driving sta-
bility of the AGV.

0e following four assumptions are made in this re-
search: ① the warehouse map is known; ② the warehouse
grid map is divided into passable and nonpassable grids;③
the AGV is in good condition;④ the starting point and end
point of a task are known.

2.2. Model Building. 0e objective function is to minimize
the number of turns and the length of the path. A multi-
objective path optimization model is established. 0e
P-RACO is used to solve the problem to obtain the path
which can meet the requirements of these two constraints to
the greatest extent.

2.2.1. Warehouse Environment Model. 0rough the analysis
of an actual warehouse environment, the AGV working
environment is determined to be a two-dimensional static
environment that is divided into shelves (barriers) and
AGV driving channels. 0e grid method is simple and
effective; the use of a grid map can greatly reduce the
complexity of the warehouse environment modeling.
0erefore, the grid method is used to divide the working
environment. In the simulation program, the driving
channel is a passable grid, which is identified by 0, and the
obstacle is represented by a nonpassable grid, which is
represented by 1. 0e grids are marked (passable, non-
passable) and identified using two-dimensional rectangular
coordinates. Figure 1 illustrates a 10∗10 grid. 0e problem
of path planning can be simplified to the problem of finding
a better subset of the drivable grid. 0e connection of the
center point of the ordered grids is the path planned by the
algorithm.

0e barrier grids are black, barrier-free grids are
white, S is the grid’s identifying number, and L is the edge
length of the grid. 0e corresponding relationship be-
tween the grid number and the grid center coordinate is as
follows:

x � mod(S, L) − 0.5,

y � S + 0.5 − ceil
S

L
􏼒 􏼓.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

2.2.2. Objective Function of Minimum Number of Turns.
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In practical environments, fewer turns on paths can reduce
the overall mechanical loss and prolong the service life of an
AGV. 0e objective function is as follows:

minN(d) � 􏽘

n�1

n�1
dn, (2)

dn �
0， n � 1 or kn � kn−1,

1, kn ≠ kn−1,
􏼨 (3)

kn �
yn+1 − yn

xn+1 − xn

, (4)

kn−1 �
yn − yn−1

xn − xn−1
, (5)

where N(d) is the number of turns in the path; dn is the
number of routes turning on the nth node; (xn, yn),
(xn+1, yn+1) are the coordinates of the adjacent grid centers
passing through the path; k is the slope; and n is the sequence
number of the grid centers of the path.

2.2.3. Objective Function of Shortest Path. In practical en-
vironments, an AGV can save time and improve the effi-
ciency of the whole warehouse by seeking the shortest
driving path. 0e objective function is as follows:

minL(P) � 􏽘

N(d)

i�1
L Pi, Pi+1( 􏼁 � 􏽘

N(d)

i�1

���������������������

xi+1 − xi( 􏼁
2

+ yi+1 − yi( 􏼁
2

􏽱

,

(6)

where L(P) denotes the sum of the shortest paths; L(Pi, Pi+1)

is the distance between pointPi and Pi+1; (xi, yi),
(xi+1, yi+1) are the coordinates of the center point of the
current grid and the next point; and N(d) is the number of
turns in the path.

2.2.4. Utility Function. In order to simplify the model, the
length of each grid in the grid map is set to be one unit length
(the dimension of the objective function should be unified
according to the actual unit length in its practical applica-
tion). 0e objective function is calculated by linear
weighting, so that the solution can satisfy both the shortest
path and the minimum number of turns. 0e relationship
between the above two objective functions and the utility
function Z (L, N) is established. 0rough this coordination,
the multiobjective problem is transformed into a traditional
single-objective solving problem. 0e utility function is as
follows:

Z(L, N) � ω1L(P) + ω2N(d), (7)

where ω1 is the path length’s weight coefficient; ω2 is the
turn number’s weight coefficient; L(P) is the summation of
the shortest path; and N(d) is the number of turns in the
path.

3. Proposed Algorithm: Parallel-Ranking Ant
Colony Optimization

As an evolutionary algorithm, the ACO algorithm has
shown great potential to solve combinatorial optimization
problems. However, like other evolutionary algorithms, it
has shortcomings in terms of its convergence speed and its
ease of falling into a local minimum solution. In order to
address these problems, it is necessary to redesign the search
strategy of the ant colony.

3.1. Algorithms for Solving the Shortest Path. In genetic al-
gorithm, a ranking selection mechanism is used to improve
the search speed. First, the population is classified according
to fitness; then, the probability of being selected depends on
the order of the individuals. 0e higher the fitness, the better
the individual is, and the higher the probability of it being
selected in the next iteration. 0is ranking and selection
concept of genetic algorithms is extended to the ant colony
algorithm. After all of the ants complete an iteration, a
selection is made.0e w-1 ants ranked first in the ant colony
in addition to the ants constituting the best solution (up to
the current iteration) are selected, and the pheromones of
the paths of the w ants are updated. 0is algorithm is called
the ranking ant colony optimization (RACO).

However, an ant colony algorithm based on the ranking
optimization accumulates numerous pheromones in the
local area very early. Although the speed is improved, it
reduces the diversity of solutions in each generation.
Consequently, the algorithm can readily fall into a local
optimum. To address this problem, the ant colony is di-
vided into several subcolonies to grow together, and the
pheromone of the better individual in a subcolony is
transmitted to another subcolony. 0is is accomplished
through an information interaction between the subcol-
onies. 0e transmission ensures that the pheromone ac-
cumulation of each subcolony has the correct direction.
0e flowchart of the algorithm for a single subcolony is
shown in Figure 2, and the schematic diagram of the
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Figure 1: Grid coordinates and grid number arrangement.
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information interaction for each subcolony is shown in
Figure 3. All the steps of the parallel-ranking ant colony
optimization (P-RACO) are described in more detail
below.

Before the path construction, a large ant colony is di-
vided into several subcolonies such that each subcolony has
m ants. When the ants in each subcolony construct the path,
the ants choose the next node by roulette. When ant k is in

node i, the probability of selecting node j (node j is not
visited) is as follows:

P
k
ij �

τij􏽨 􏽩
α
ηij􏽨 􏽩

β

􏽐i∈Nk
i
τij􏽨 􏽩

α
ηij􏽨 􏽩

β. (8)

If the node has been accessed,Pk
ij � 0. τij is the phero-

mone on edge (i, j) and ηij is the heuristic information of
edge (i, j). For a general path search problem, ηij takes the
reciprocal of the path length, and α and β are the algorithm
parameters.

When each ant generates a path, it volatilizes part of the
pheromone that exists on the path before updating the
pheromone, as follows:

τij⟵(1 − ρ)τij, (9)

where ρ is a pheromone volatile factor. 0e ants of a sub-
colony are sorted according to the value of the constructed
path’s utility function (Z1≤Z2≤ . . .≤Zm). At the same time,
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Figure 2: Single sub-ant colony operational flowchart.
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according to the length of the path constructed by the ants in
the subcolony, n ants (i.e., the first n-1 ants with a higher
contribution, and one ant with the best path constructed so
far) are selected from each subcolony and passed to the
neighboring ant colony. Moreover, the path information of
the n superior ants is received from the neighboring ant
colonies. 0is parallel-ranking ant colony optimization
system allows n superior ants to release pheromones on the
path of their own colony. 0e pheromone release rule of this
system is related to the order and contribution value of the
ants: the amount of pheromones released by the ants is
proportional to their ranking. In addition, the amount of
pheromones transmitted by neighbors is obtained according
to the ranking. 0e pheromone update formula is as follows:

τij⟵τij + 􏽘
w−1

r�1
(w − r)Δτr

ij + wΔτbs
ij +􏽘

n−1

q�1
(n − q)Δτq

ij + nΔτnbs
ij ,

(10)

where Δτr
ij is the amount of pheromones released by the first

ant in its path. When edge (i, j) is on the path constructed by
ant r, then Δτr

ij � 1 ∕ Cr. When edge (i, j) is not on the path
constructed by ant k, thenΔτr

ij � 0. When the edge (i, j) is on
the optimum path up to now, thenΔτbs

ij �1/Cbs.
Otherwise,Δτr

ij � 0, Δτq

ij is the amount of pheromones re-
leased by the first n-1 ants in their path. Furthermore, Δτnbs

ij
is the best solution composed by the neighboring ant colony
up to now; r is the ranking sequence of the ants in their own
colony; and q is the ranking sequence of the neighboring ants
in their own colony.

3.2. Avoiding the “Dead Corner of Path” Problem.
Warehouse environments vary with the complexity of their
functions. In a complex environment, ants may fall into a
dead corner state in the process of searching for solutions
(i.e., no target point is found and no mobile nodes are
present). 0is state is illustrated in Figure 4.

Figure 4 shows that ants fall into a dead corner at the
point P. To solve this problem, [18] adopts the method of an
early death to make the ants in a dead corner die. As a
result, the pheromones on this path are not updated.
However, this method is not conducive to the search of a
global optimal solution when more ants fall into dead
corners in the ant colony. One approach proposed to
address this issue is to abandon the generation of the path
and begin a new search from the starting point [19].
However, this method increases the search time of the
algorithm and cannot avoid the algorithm falling into the
dead corner again. 0erefore, this paper proposes that
when an ant is in a dead corner state, it is allowed to retreat
one step and update the search tabu table. 0is approach
allows the current ant to reselect a mobile node and punish
the pheromone on the edge. 0e pheromone penalty
function is as follows:

τrs � (1 − λ)τrs, (11)

where (1 − λ) is the corresponding penalty coefficient and
τrs is the pheromone on the return path.

0is solution can improve the global search capability of
the algorithm and effectively avoid ants falling into the dead
corner at the same location.

3.3.PathSmoothing. A smooth and executable path with less
turns is an important part of warehouse AGV path planning.
Too many turns during the operation of the AGV will
significantly increase the mechanical wear of the machine
and reduce its service life. In order to reduce this impact and
make the obtained path more applicable to the actual robot,
it is necessary to smooth the path [20].

As the warehouse map model is a grid map, the path
generated in the first stage is a broken line composed of
straight lines; these connect the centers of each grid. In
practice, when there are no barriers on the road, several grids
can be crossed directly. 0e center points of nonadjacent
grids can be connected to reduce the number of turns and
the length of the path, so as to improve the overall efficiency
of the warehouse. 0e flowchart is shown in Figure 5, in
which PN􏼈 􏼉 is the initial path sequence.

4. Experimental Results and Analysis

Firstly, the path solving process is introduced, and the per-
formance of the proposed algorithm is tested with the classical
TSP model and compared with other algorithms. 0en, the
proposed algorithm is used to solve the AGV path planning in
the 30∗ 30 and 35∗ 35 warehouse grid graphs and compared
with other multiobjective algorithms. Finally, the generated
path is smoothed and the data before and after the path
smoothing is compared. 0e computing environments are
Windows 10, i5 CPU, 8GB memory, and MATLAB 2018.

4.1. Path Solving Process

P

Figure 4: Dead corner of a path state diagram.
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Step 1. According to the actual warehouse environ-
ment, map the distribution of obstacles in the intelli-
gent warehouse to a grid graph and build a warehouse
map model.
Step 2. Use the P-RACO algorithm to obtain the op-
timal path.
Step 3. Output the path if the calculation reaches the
predetermined termination condition; otherwise,
return to Step 2.
Step 4. Smooth the path generated by Step 2 by deleting
invalid intermediate nodes.
Step 5. Verify the performance of the P-RACO in
solving multiobjective warehouse problems, and
compare it with other algorithms.
Step 6. End.

4.2. PerformanceTest of Algorithms. 0e TSP is a typical NP-
hard problem, and it is often used to test the performance of
various optimization algorithms. Most of the research on
picking operations abstracts the picking path into the TSP
model.

Firstly, the TSP model is used to test the optimization
performance of the P-RACO algorithm. 0e test results are
compared with those of ACO, RACO, and the improved ant
colony (IAC) proposed in the literature [17]. In the TSP
model, the number of cities is set to 31, the number initial ant

colonies is set to 45, the maximum number of iterations is
200, the number of subcolonies is set to 5, and the number of
ants per subcolony is 35.

Each algorithm runs 50 times and records the maximum
value (Max), minimum value (Min), average value (Avg),
and standard deviation (Sd) of the runs.

When solving the TSP, it can be seen from Table 1 that
the convergence speed and stability of ACO are poor. RACO
can quickly accumulate local pheromones, and the con-
vergence speed is relatively fast. However, the accumulated
direction of pheromones in the initial stage of the algorithm
is prone to errors, so the algorithm is not stable enough. In
IAC, the convergence speed and stability are improved, due
to the promotion of the initial pheromone. In this case, the
optimal solution is rapidly found in the fifth generation. 0e
approach proposed in this paper further improves the IAC
algorithm. Because of the cooperation of multiple pop-
ulations, the early pheromone accumulation has better di-
rectionality, the algorithm converges quickly, and the
optimal solution can be obtained as soon as the third
generation. 0e average value of the path length and the
number of iterations obtained by P-RACO are smaller than
those of the other three algorithms. 0is shows that the
overall convergence speed of the P-RACO algorithm is faster
than those of the other three algorithms. In addition, the
proposed algorithm’s ability to search for the optimal so-
lution is also better than those of the other three algorithms.
0e standard deviation of the path length and iteration times

Start

Obtaining turning point 
sequence of path {pn}

i = 1

Search for the first turning 
point sequence number i + 1

a�er turning point i

Are there any obstacles on the 
connection between i and i + 2?

i = i +1

i = N?

Smoothed path node 
sequence {PN}

End

Removing the nodes between i and 
i + 2 to generate a new sequence of 

turning points {PN}

Yes

Yes

No

No

Figure 5: Path smoothing processing flowchart.
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for all of the algorithms indicates that the stability of the
P-RACO algorithm is better.

4.3.DiversityAnalysis of Solutions. After each iteration of the
RACO algorithm, pheromones are rewarded to the ants with
higher contributions. Although this behavior makes ants
approach the optimal solution faster through the rapid
accumulation of pheromones, it also reduces the diversity of
the ant solutions. In this paper, P-RACO uses a multiple-
ant-colony search to increase the diversity of the whole ant
colony solution.

0e standard deviation D (p) of the solution searched by
all of the ant colonies in each iteration is used as a function to
analyze the diversity of the algorithm. 0e calculation for-
mula is as follows:

D(P) �

�������������

􏽐
100
r�1 L

p
r − Lp􏼐 􏼑

2

M − 1

􏽳

, (12)

where L
p
r denotes the length of the path searched by the r ant

in the pth iteration generation, and Lp denotes the average
value of the path searched by all of the ants in the r gen-
eration. 0e diversity curves of the first 100 iterations of the
algorithm are shown in Figure 6.

Figure 6 shows that, in the initial stage of the algorithm,
the solution has a high diversity. As the iterating of the
algorithm progresses, the diversity of the solution gradually
decreases, but the standard deviation is always greater than
0. 0is shows that the algorithm does not appear to enter a
stagnation state, and the solutions of each generation have
good diversity.

4.4. Initial Path Generation and Algorithmic Comparison.
In this section, multiobjective path planning is carried out
on the simplified two-dimensional grid map of the ware-
house, and the model is established according to the
common warehouse size. 0e warehouse maps are set to

30∗ 30 and 35∗ 35 sizes. 0e number of barrier grids is 200
and 400, respectively. Four algorithms (ACO, TACO, IAC,
and P-RACO) are used to solve the problem.

4.4.1. Experiments on the 30∗ 30 Map. For the 30∗ 30
environment, Figure 7 shows the path planning results of the
four algorithms, Figure 8 shows the convergence curve of the
four algorithms, and Table 2 shows the results of the 50 runs
of the four algorithms.

From Figure 8, it can be seen that the ACO algorithm
has obviously fallen into a local optimum, mainly because
of the uneven distribution of pheromones in the initial
iteration of the algorithm, the weak positive feedback
effect, and the inability to choose a better global path.
Consequently, there are many turns, a longer path, and a
slower convergence speed.0e RACO and IAC algorithms
can avoid the relatively poor paths at the beginning of the
iterations and improve the convergence speed of the al-
gorithm. However, because of the low diversity of the
search solutions, they still fall into local optimal paths. In
this paper, the P-RACO algorithm can complete the so-
lution quickly; from Table 2, it can be seen that the
shortest time to search for the optimal solution is eight
iterations. 0e multi-subcolony search of the P-RACO
significantly improves the search capability of the algo-
rithm, avoids the algorithm falling into a local optimum,
and makes the quality of the solution better. From Table 2,
it can be seen that the P-RACO has a smaller standard
deviation, indicating that the stability of the algorithm is
better.

4.4.2. Experiments and Results of a 35∗ 35 Complex Map.
For the 35∗ 35 environment, Figure 9 shows the path
planning results of the four algorithms, Figure 10 shows the
convergence curve of four algorithms, and Table 3 shows the
results of the 50 runs of the four algorithms.

Table 1: 50-simulation results of four algorithms for the TSP model.

Path length 0e number of iteration
Max Min Avg Sd Max Min Avg Sd

ACO 3369.457 3198.345 3141.356 58.754 96 13 17.65 15.678
RACO 3280.290 3089.658 3189.875 29.747 57 7 10.35 5.869
IAC 3179.658 3086.897 3124.121 27.864 25 6 8.64 5.786
P-RACO 3154.785 3048.856 3104.457 21.654 18 3 5.89 3.879

0
50

100
150
200
250
300
350

St
an

da
rd

 d
ev

ia
tio

n

20 40 60 80 1000
�e number of iterations

Figure 6: Diversity curve.
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With the increase of map complexity, the stability of the
ACO algorithm becomes worse. Figure 10 shows that the
ACO and RACO algorithms still fall into a local optimum
when searching for solutions. 0e IAC algorithm can
search for the optimal solution better through pheromone
cross-mutation in the later stage of the algorithm. 0e
P-RACO algorithm can obtain smaller initial values in the
early stage, which shows that the algorithm has a better

direction when pheromones accumulate. In addition, the
convergence speed of the P-RACO algorithm is higher.
From the mean and standard deviation of the three ex-
periments in Table 3, when the map complexity increases to
35∗ 35, the average convergence algebra of the ACO al-
gorithm increases by 7.51 generations, and the RACO and
IAC algorithms increase by 7.11 generations and 6.59
generations, respectively, while the P-RACO algorithm only
increases by 1.36 generations. From Table 3, it can be seen
that, with the increase of environmental complexity, the
solution effect or the stability of the P-RACO algorithm is
obviously better than that of the other three algorithms.

0e experimental results show that the algorithm in this
paper converges after 100 iterations at most when solving
the path planning problem of different size warehouses.
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Figure 7: Path planning result diagrams of the four algorithms in the 30∗ 30 map. (a) ACO. (b) RACO. (c) IAC. (d) P-RACO.
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Figure 8: Convergence curves of the four algorithms in the 30∗ 30
map.

Table 2: 50-simulation results of the four algorithms in the 30∗ 30
map.

Max Min Avg Sd
0e number of

iterations
Max Min Avg Sd

ACO 36.578 30.726 32.889 1.446 33 20 24.98 3.346
RACO 34.768 30.890 32.776 1.267 25 17 17.49 2.879
IAC 34.960 30.352 31.097 1.188 26 14 16.75 2.245
P-
RACO 34.086 29.872 30.463 0.902 10 8 8.89 0.508
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After 100 iterations, the ACO algorithm does not search for
even better paths, and the value of the minimum utility
function does not change any more. 0erefore, the maxi-
mum number of iterations of the experimental results is set
to 100.

4.5. Path Smoothing. In this experiment, the turning center
of the generated optimal path is processed to reduce the
number of invalid paths and the number of turns of the
AGV. 0e intermediate nodes of the generated optimal
path are processed as illustrated in Figure 5, and a
comparison of the smoothed path is shown in Figure 11.
Table 4 compares the data before and after the path
smoothing improvements.
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Figure 9: Path planning result diagrams of the four algorithms in the 35∗ 35 map. (a) ACO. (b) RACO. (c) IAC. (d) P-RACO.
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Figure 10: Path planning result diagrams of the four algorithms in the 35∗ 35 map.
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For the 30∗ 30 and the 35∗ 35 maps, Table 4 shows that
the smoothed path length decreases by 5.9% and 7.2%,
respectively; the number of turns for thesemaps decreases by
15.3% and 39.0%, respectively. 0is shows that the method

can effectively reduce the path length and the number of
turns in the AGV driving path.

0e research of this paper is based on a general practical
warehouse that is simplified to a two-dimensional grid map
model. 0erefore, the algorithm in this paper is universal in
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Figure 11: Smoothing route comparison. (a) Comparison of route smoothing in the 30∗ 30map. (b) Comparison of route smoothing in the
30∗ 35 map.

Table 4: Data comparison before and after the path smoothing.

Map
size

Length before
smoothing

Length after
smoothing

Reduction
rate

Turns before
smoothing

Turns after
smoothing

Reduction rate
(%)

30∗ 30 42.3553 39.8410 5.9 13 11 15.3
35∗ 35 51.1838 47.5159 7.2 18 11 39.0

Table 3: 50-simulation results of the four algorithms in the 35∗ 35 map.

Max Min Avg Sd
0e number of iterations

Max Min Avg Sd

ACO
49.345 40.125 45.430 3.568 42 27 32.49 2.970
45.384 40.345 42.456 2.346 34 19 24.60 2.097
47.293 38.872 42.236 1.870 28 19 23.34 1.083

P-RACO 43.986 38.262 40.346 0.866 12 9 10.20 0.533
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the warehouse AGV path planning domain. 0is path
planning method can be applied to a variety of different
types and sizes of warehouses, which can effectively improve
the efficiency of warehouse operation.

5. Conclusion

Aimed at the problem of AGV path planning in automated
warehouses, a P-RACO for path planning is proposed. 0e
method of reducing invalid intermediate nodes is used to
smooth the generated path. Firstly, the TSP problem is used
to test the performance of the algorithm, and then the al-
gorithm is verified on the two-dimensional grid warehouse
map model. 0e following conclusions are drawn:

(1) When the P-RACO is used to solve the path planning
multiobjective problem of the warehouse model, the
path obtained can integrate two objectives: the
shortest path and the least number of turns. Com-
pared with approaches that only consider the
shortest path, the P-RACO algorithm improves the
efficiency and reduces the number of turns.

(2) Compared with the ACO, RACO, and IAC algo-
rithms, the P-RACO algorithm proposed in this
paper accumulates more pheromones in the early
stage of solving the path planning problems under
the TSP and for warehouses with different com-
plexities. 0e P-RACO algorithm has better direc-
tionality, which can avoid the algorithm falling into a
local optimum; from the standard deviation of many
experiments, the proposed algorithm has better
stability.

(3) By analyzing the standard deviation of the first 100
iterations when the P-RACO algorithm solves the
TSP, it can be seen that the solutions of each gen-
eration of the algorithm have better diversity and the
algorithm does not appear to stagnate.

(4) In this paper, the initial path is smoothed by re-
ducing the intermediate nodes. 0is method sig-
nificantly reduces the number of turns and the length
of path in AGV driving. Consequently, it improves
the overall operational efficiency of the warehouse
and the service life of the AGVs.

In this paper, we mainly consider the operation of a
single AGV in a warehouse.0e dynamic collision avoidance
problem resulting from multiple AGVs working simulta-
neously in an environment is an interesting and valuable
direction for future research.
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