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a b s t r a c t

Accurate forecasting of energy consumption in office buildings is of great importance for optimal
management of energy consumption and reduction of building energy consumption. A variety of
combination forecasting models (FMs) have become the current research hotspots in the field
of building energy consumption forecasting. For the problems of large systematic errors and poor
generalization ability of existing combination FMs, this paper proposes a dynamic combination residual
forecasting model (FM) with the optimal combination approach. Firstly, support vector regression (SVR)
is selected as the basic FM, and the SVR residual errors are forecasted by the dynamic combination
FM based on the weights, and the SVR forecast value is finally corrected. Further, the basis for the
selection of the single FM in the combination model and the optimal number of combination terms
are given by mathematical proof in this paper. A case study in Xi’an shows that the dynamic combined
residual errors correction FM with the optimal number of terms proposed in this paper can reduce
the mean absolute error (MAE) of the basic model from 1918.59 kW to 349.37 kW, the mean absolute
percentage error (MAPE) from 15.80% to 2.96%, and the root mean square error (RMSE) from 2278.74
to 471.44.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, China’s building energy consumption has been
n the rise. The total energy consumption of buildings nation-
ide has reached 899 million tons of standard coal, with public
uildings accounting for 38.53% of the energy consumption (Chen
t al., 2022a). Energy saving and emission reduction in public
uildings are mainly achieved through energy-saving renovation
nd optimized building management (Shaikh et al., 2014; Singh
nd Dwivedi, 2019). Building energy consumption prediction is
n important part of building management, which provides a
eference for matching energy supply and demand and intelligent
ontrol of building energy systems (Parvin et al., 2021). The
nalysis of various influencing factors enables the forecasting of
nergy consumption in large buildings, which helps to reduce
uilding energy consumption and CO2 emissions (Wang et al.,
022b).
Current building energy FMs fall into two main categories, one

s a physical model based on thermodynamic calculations and
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E-mail address: weina9232022@163.com (N. Wei).
ttps://doi.org/10.1016/j.egyr.2022.09.022
352-4847/© 2022 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
the other is a data-driven model based on machine learning (Li
et al., 2020). Physical models rely on software tools to simulate
building energy consumption, and these models need to integrate
the impact of building physical parameters and internal sys-
tem operating parameters on building energy consumption (Chen
et al., 2022b). The data-driven model is based on historical data
and uses mathematical methods to derive hidden relationships
between output and input variables (Yang et al., 2022). Compared
with physical models based on simulation calculations, data-
driven models have the advantage of high forecasting accuracy
and fast calculation speed (Zhang, 2021). Data-driven models are
mostly used when there is sufficient historical data.

In the field of building energy consumption forecasting, com-
monly used FM include autoregressive integrated moving av-
erage (ARIMA), multiple linear regression (MLR), random forest
regression (RFR), grey model (GM), back propagation neural net-
work (BPNN), and support vector regression (SVR) (Amasyali and
El-Gohary, 2018).

The single FM proposed above performs well in different
forecasting domains, but no single FM can be applied to all
cases (Bourdeau et al., 2019). In order to further improve the
forecasting accuracy of building energy consumption, Combi-
nation FMs that combine the advantages of various single FM
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Nomenclature

FM forecasting model
FMs forecasting models
SVR support vector regression
MAE mean absolute error
MAPE mean absolute percentage error
RMSE root mean square error
ARIMA autoregressive integrated moving aver-

age
MLR multiple linear regression
RFR random forest regression
GM grey model
BPNN back propagation neural network
IEHO improved elephant herding optimiza-

tion
GA genetic algorithm
LSTM long short-term memory neural net-

work
FNN feedforward neural network
IGOW improved grey wolf algorithm
RF random forest
XGBoost extreme gradient boosting
KNN K nearest neighbours
SVR-ARIMA The residuals are forecasted by ARIMA

and corrected for SVR.
SVR-BPNN The residuals are forecasted by BPNN

and corrected for SVR.
SVR-RFR The residuals are forecasted by RFR and

corrected for SVR.
SVR-GM The residuals are forecasted by GM and

corrected for SVR.
SVR-MLR The residuals are forecasted by MLR and

corrected for SVR
SVR-4 Single FMs Dynamically select 4 single FM combi-

nation with the smallest relative error
to forecast the residuals and correct the
SVR.

SVR-3 Single FMs Dynamically select 3 single FM combi-
nation with the smallest relative error
to forecast the residuals and correct the
SVR.

SVR-2 Single FMs Dynamically select 2 single FM combi-
nation with the smallest relative error
to forecast the residuals and correct the
SVR.

BPNN-ARIMA The residuals are forecasted by ARIMA
and corrected for BPNN

BPNN-SVR The residuals are forecasted by SVR and
corrected for BPNN

BPNN-RFR The residuals are forecasted by RFR and
corrected for BPNN

BPNN-GM The residuals are forecasted by GM and
corrected for BPNN

BPNN-MLR The residuals are forecasted by MLR and
corrected for BPNN

BPNN-4 Single FMs Dynamically select 4 single FM combi-
nation with the smallest relative error
to forecast the residuals and correct the
BPNN.
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BPNN-3 Single FMs Dynamically select 3 single FM combi-
nation with the smallest relative error
to forecast the residuals and correct the
NPNN.

BPNN-2 Single FMs Dynamically select 2 single FM combi-
nation with the smallest relative error
to forecast the residuals and correct the
SVR.

are proposed. Combination FMs can combine several single FM,
which combine techniques such as data pre-processing, feature
selection, and optimization algorithms to give full play to the
advantages of different techniques and achieve better building
energy forecasting performance (Kourentzes et al., 2019). The fol-
lowing three types of Combination FMs are commonly used: (1)
Combination models combining optimization algorithms and a
single FM. (2) Combined models based on weights. (3) Combined
models based on residual error correction.

When machine learning algorithms such as SVR and ANN are
used for building energy consumption forecasting, the parame-
ters are generally selected artificially, and the selection of these
parameters greatly affects the forecasting accuracy of the model.
Scholars solve for the best parameters by intelligent optimization
algorithms to get better forecasting performance, which is the
combined model with intelligent optimization algorithm. Wang
et al. (2022a) used the improved elephant herding optimiza-
tion (IEHO) to optimize the weights and thresholds of BPNN,
and proposed an IEHO-BPNN FM for cold load and heat load.
Experimental results show that the forecasting results of this
method are more accurate and have less oscillation than BPNN.
Luo and Oyedele (2021) used genetic algorithm (GA) to select the
optimal architecture for long short-term memory (LSTM) neural
network to improve its forecasting accuracy and robustness, and
tested the performance of the proposed forecasting model by
two educational buildings. GA-LSTM neural network outperforms
feedforward neural network (FNN) and LSTM neural network FMs
in terms of forecasting performance. Cheng et al. (2022) proposed
a short-term hybrid FM with improved grey wolf algorithm op-
timized support vector regression (IGOW-SVR) and applied the
model to ice storage air conditioning load forecasting. Experimen-
tal results show that the proposed model has higher forecasting
accuracy, shorter running time, and stronger robustness than
neural networks in the case of small samples.

Combination models based on weight are an important re-
search branch in the field of forecasting. The theory of combi-
nation forecasting was first proposed by Bates and Granger in
1969 (Bates and Granger, 1969). In a combination FM, single
FMs usually contain only partial information of the forecasting
object. Using multiple single FMs to forecast the same object
and combining them by assigning different weights based on
the forecasting results can improve the forecasting accuracy of
the system by including more comprehensive information. Fan
et al. (2014) used eight popular FMs to forecast building energy
consumption and optimized the weights of the eight forecast-
ing models using GA to finally construct a combined FM. This
method was used to forecast a large public building in Hong
Kong. The results showed that the mean absolute percentage
error (MAPE) of the combined model was 2.32%, which was lower
than that of every single FM. Wang et al. (2020) proposed a novel
combined FM for building energy consumption. In their study,
random forest (RF), extreme gradient boosting (XGBoost), SVR,
and K nearest neighbours (KNN) models were selected as single
FM for the combination. The forecasting results indicated that

the combined model outperformed the single FM in terms of
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orecasting accuracy, generalization ability, and robustness. Chou
nd Bui (2014) used five single models to form an equal-weight
ombination FM for forecasting heat and cooling loads in the
uilding design phase. The results demonstrate the validity, and
ccuracy of the combined model for the forecasting of cold and
hermal loads.

In addition to the above mentioned combination FMs, there
s another combination FM based on residual error correction in
he literature, whose structure takes into account the residual
alues obtained from the basic FM. Assuming that the residual
alue can be accurately forecasted, the accuracy of the forecasting
odel is improved by correcting the forecast value of the basic
odel with this residual value. The importance of this technique

s that it can reduce to some extent the negative impact on the
orecasting accuracy of systematic errors, which imply that the
orecast values are too high or too low most of the time and can
e encountered in all FMs. Karthika et al. (2017) used a combined
RIMA-SVMmodel to forecast the hourly electricity load demand.
he demand was first forecasted using the ARIMA model, and
hen its residual was forecasted by SVR and the forecasting results
f the ARIMA model were revised. Using the historical load data
f a public building in the south from 2014–2015 as the research
bject can be obtained, the MAPE of ARIMA was significantly
educed after the residual correction. Li and Li (2017) used GM as
he basic forecasting model to forecast energy data in Shandong
rovince in China. Then, the GM residuals were forecasted using
he ARIMA model, and finally, the forecasting accuracy of the
riginal forecast was further improved after residual correction.
y comparing the average relative errors of different models, the
esults show that the combined GM-ARIMA model has higher
ccuracy than individual models. Feng et al. (2021) proposed
n EVCS load forecasting method based on a combination of
ultivariate residual correction GM and LSTM network. The final

orecasted load of EVCS is obtained by summing the forecasted
alues of GM and the forecasted residuals of LSTM. The effective-
ess of the proposed method in the literature is verified through
xperiments and simulations.
These three combination models have different combination

rinciples and model frameworks, but their forecasting accuracy
s better than that of the single forecasting models. However,
hese combined models also have some Shortcomings: (1) The
ombined model combining optimization algorithm and single
M has high forecasting accuracy, but its generalization ability is
oor. Their forecasting accuracy may be less satisfactory if a dif-
erent study object is used; (2) For the combination model based
n weight, the existing literature focuses on how to solve the
eights of every single FM. There is no solution to the problems
f how to select FM and how many single FM to select for combi-
ation; (3) The combined model based on residual correction can
educe the impact of systematic error on the forecasting accuracy,
ut the residual sequence has strong randomness, and it is still a
ifficult problem to forecast the residual accurately;
In summary, the forecasting performance of the combined

orecasting model still has much space for improvement. How to
mprove the generalization ability and forecasting accuracy of the
ombinatorial model is an urgent problem to be solved.
In view of the above problems, this paper combines the ad-

antages of the combined FM and the residual correction FM,
nd proposed an FM based on the dynamic combined residual
orrection. First, an FM is selected as the basic FM to forecast
uilding energy consumption, the residual series is obtained by
ubtracting the actual values from the forecasted values. In view
f the strong randomness of the residual series, a combined
M is introduced to improve the accuracy of the residual errors
orecasting. Finally, the forecasted value of the basic model is cor-

ected by residual errors. Further, in the combined residual error

12444
FM, the two problems of how to select a single model and how
many single models to select for combination are mathematically
derived, and the basis for selecting a single model and the optimal
number of single models are obtained. The method proposed in
this paper can effectively improve the forecasting accuracy and
generalization ability through an example of energy consumption
forecasting in a large office building in Xi’an.

The rest of the paper is organized as follows. Section 2 contains
the method. Section 3 contains the case analysis. Section 4 con-
tains the result and discussion. Section 5 contains the conclusions

2. Methods

2.1. Model framework

Fig. 1 shows the model framework. First, an FM is selected
as the basic model to forecast building energy consumption.
The residual errors of the basic model are forecasted by the
combined residual errors FM, and the combined residual errors
forecasted value is obtained. By adding the combined residual
errors forecasted value with the basic model forecasted value, the
final corrected forecast value of the basic model is closer to the
actual value. The accuracy of the forecasting of the basic model
will be improved. In the combined residual errors forecasting, the
selection basis of the single FM and the optimal number of single
FM are proved in Section 2.4.

2.2. The single forecasting model

Different forecasting models have different characteristics and
applications. For example, the GM directly capitalizes on accu-
mulated original data to identify the rules of a system and then
builds exponential models without consideration of the system
structure. Moreover, different GMs can be constructed according
to the features of the original data. MLR is built using regression
analysis to determine the relations between the forecasting ob-
ject and the relevant influencing factors (Dhaval and Deshpande,
2020). The ARIMA model with a simple structure and unitary
data is used to forecast the next value of a series (Bento et al.,
2021). RFR makes it easy to get nonlinear relationships in a
dataset. However, the forecasting accuracy is low and not suitable
for small data sets (Dong et al., 2021). Despite the substantial
adaptability and strong learning capacity, the forecasting accu-
racy of BPNN models still needs to be improved because of a
large number of training samples and the difficulty in finding
an optimal network structure (Singh and Dwivedi, 2019). Com-
pared with BPNN, SVR is a supervised machine learning method
based on statistical theory with the ability to transform nonlinear
relationships into linear relationship (Zhang et al., 2016). Since
the law of energy consumption change has strong non-linearity
and uncertainty, using SVR to forecasting building energy con-
sumption can better solve this problem (Ma et al., 2019). SVR
has become a research hotspot in the field of building energy
consumption forecasting because of its good fitting ability to the
nonlinear characteristics of building energy consumption and the
small amount of operations (Moradzadeh et al., 2020; Panahi
et al., 2020). Therefore, SVR is used as the basic model for building
energy consumption forecasting in this paper where ARIMA, RFR,
MLR, GM, BPNN are the single FMs in the combined residual FM.

The principles of the single FMs used in this paper are briefly
described in this section, and the details of the application are

described in Section 3.
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Fig. 1. Combined residual errors correction forecasting model framework.
.2.1. SVR
Support vector machine (SVM) is a powerful supervised ma-

hine learning method that can effectively deal with nonlinear
lassification and regression problems. It can efficiently handle
igh-dimensional spatial problems. When using the SVM algo-
ithm for regression problems, it is called SVR. Based on the train-
ng set data, the relationship function between the approximating
ariables is:

(x) = ⟨w, ϕ (x)⟩ + b (1)

here x is the input vector; w is the weight coefficient; ϕ (x)
s the mapping function; b is the bias; where f (x) denotes the
orecasting outputs. The SVR algorithm ensures the smoothness
f the functional relationship by minimizing the sum of squared
eight coefficients in the process of approximating the functional
elationship. An error less than ε is tolerated to improve the gen-
ralization performance of the model. Therefore, w and b are de-
ermined by solving the following quadratic convex programming
roblem.

min
w,b,ξi,ξ∗

i

1
2

∥w∥
2
+ C

n∑
i=1

(
ξi + ξ ∗

i

)
(2)

s.t

⎧⎪⎨⎪⎩
yi − ⟨w, ϕ (x)⟩ − b ≤ ε + ξi

⟨w, ϕ (x)⟩ + b − yi ≤ ε + ξ ∗

i

ξi, ξ
∗

i ≥ 0, i = 1, . . . , n

(3)

where: ξi, ξ ∗

i are the Slack variables; C is the penalty factor,
> 0; yi is the output corresponding to the ith sample; ε

is the tolerance error. The linear separable plane is constructed
and solved by introducing an implicit kernel function instead
of ϕ (x), which maps the nonlinear problem to a higher dimen-
sional space. To solve the nonlinear correlation between building
energy consumption and impact factors linear correlation, the
kernel function commonly used to deal with nonlinear problems
is chosen as Radial Basis Function (RBF).

kRBF
(
a′, a

)
= e

∥a′−a∥
2

2σ2 (4)

where: a′, a are two low-dimensional vectors. 1
2σ2 , also known

as the γ parameter, reflects the degree of separation of the
mapping. The C , ε, and γ parameters are called model hyperpa-
rameters, which are constant during the model training process,
and adjusting the model hyperparameters can change the model
performance.
12445
Chen and Tan (2017) proposed a new SVR model that selects
the ambient temperature in the next 2 h as the actual input vari-
able for short-term electricity load forecasting. This innovation
improves the prediction accuracy by reducing the lagging effect
of thermal inertia inside buildings on weather-sensitive loads.
Houchati et al. (2022) used indoor temperature, humidity, and
solar radiation intensity as input variables and building energy
consumption as output variables to train the SVR model. The fore-
casting results show that the model can effectively improve the
forecasting accuracy. In this paper, outdoor dry bulb temperature,
relative humidity, wind speed and solar radiation intensity are
used as input variables and building energy consumption is used
as output variable to train SVR.

2.2.2. ARIMA
The basic idea of the ARIMA model is to describe the develop-

ment of a time series using its own lag series and random distur-
bance terms and their lag series. ARIMA(p, d, q) contains moving
average process (MA), autoregressive process (AR), autoregressive
moving average process (ARMA) and an autoregressive integrated
moving average model (ARIMA). The general form of the model
is:

yi = µ +

p∑
i=1

γiyt−i +

q∑
i=1

θiϵt−i + ϵt (5)

Where: µ is the constant coefficient. p is the autoregressive
order. q is the moving average order. ϵt is the random error,
which is usually a white noise series and conforms to the normal
distribution. γi and θi are the parameters to be solved. For the
non-stationary series, the d-order difference is first applied to
obtain the stationary series and then modelled. Ozturk and Oz-
turk (2018) used coal, oil, gas, renewable energy and total energy
consumption data from 1970–2015 to forecast Turkey’s energy
consumption for the next 25 years through ARIMA.

2.2.3. MLR
In the study of the linear relationship between the indepen-

dent variables x1, x1, . . . , xn and the dependent variable y, the
multiple linear regression model established is:

y = β0 + β1x1 + · · · + βnxn + ε (6)

β0 is the constant, β1, β2, . . ., βn are the regression coefficient;
ε is the random error term, which indicates the part not de-
termined by the independent variable. Substitute the historical

sample data into the above equation and use the least squares
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ethod to find the estimated value (β̂0, β̂1, . . . , β̂n) of (β0, β1, . . .,
n). The regression equation was obtained as:

ˆ = β̂0 + β̂1x1 + · · · + β̂nxn (7)

where ŷ is the output value. One drawback of the multiple linear
regression model is overfitting, which leads to poor generaliza-
tion of the model. Catalina et al. (2013) proposed an MLR model
to forecast heating energy demand, where the input variables
are the building heat loss coefficient, equivalent surface area,
and the difference between indoor and outdoor temperatures.
Experimental results show that the model has a high accuracy.

2.2.4. RFR
The random forest model is a combinatorial model based on

decision trees. If the dependent variable is a categorical variable, a
categorical discriminant model is built. If the dependent variable
is a continuous variable, a multiple nonlinear regression model is
built. In this paper, the response variable is a continuous variable,
so a regression forecasting model should be constructed. The RFR
model is built as follows: firstly, N samples are randomly selected
by using the idea of Bagging with release. Then, m variables are
randomly selected at each node (m < N , m is the total number of
independent variables in the training set). Then, a single decision
tree is constructed by using them as the candidate variables
to split the node. Repeat the above steps to generate a mass
regression decision tree. The final forecasting result of the model
is the average of the forecasting results of the mass regression
decision tree.

In the model building process, the principle of calculating
the variable selection at the nodes of the decision tree is the
minimum of the mean squared deviation. That is, for an arbitrary
division of variable A, the corresponding arbitrary division points
s are divided on both sides of the data set D1 and D2. The
corresponding variables and variable values division points are
found such that the mean squared deviation of the respective sets
of D1 and D2 is minimized, and the sum of the mean squared
deviations of D1 and D2 is minimized. The expression is:

min
A,s

⎡⎣min
c1

∑
xi∈D1(A,s)

(yi − c1)2 + min
c2

∑
xi∈D2(A,s)

(yi − c2)2

⎤⎦ (8)

here xi is the feature factor; yi is the sample true value; c1 is
he sample output mean of D1; c2 is the sample output mean of
2.

.2.5. GM
Grey system theory is a system science theory that studies

mall samples and poor information uncertainty problems. By
ining part of the known information, valuable information is
xtracted to achieve the description and monitoring of the evo-
utionary law of the system. Grey prediction is an important part
f grey system theory and is mainly used for the prediction of
rey uncertainty problems. The grey GM (1, 1) model is the basic
odel of grey prediction technique, and its model principle is as

ollows.
The original feature data sequence is x(0) =

{
x(0)(1), x(0)(2),

. . . , x(0)(n)
}
, A single accumulation is performed to generate a

new data sequence: x(1) =
{
x(1) (1) , x(1) (2) , . . . , x(1) (n)

}
.

x(1) (k) =

k∑
i=1

x(0) (i) , k = 1, 2, . . . , n (9)

z(1) (k) =
1
2

(
x(1) (k) + x(1) (k − 1)

)
, k = 2, 3, . . . , n (10)

The sequence z(1) =
{
z(1) (2) , z(1) (3) , . . . , z(1) (n)

}
is ob-

ained by the above equation.
12446
The mean value of the GM (1, 1) model is x(1) (0)+ az(1) (k) =

. A first-order single-variable differential equation was fitted to
enerate the series, and the whitened differential equation was
btained as:
dx(1)

dt
+ ax(1)

= b (11)

where the parameters a and b are the development coefficient
and the amount of ash action of the GM (1, 1) model, respectively.
The development coefficient reflects the trend of the predicted
value, and the amount of grey action reveals the intrinsic changes
of the original data. The parameters a and b can be obtained by
using the least squares method.

The data prediction model in whitened form is represented as:

x̂(1) (k) =

(
x(0) (1) −

b
a

)
e−a(k−1)

+
b
a
, k = 1, 2, . . . , n (12)

The resulting prediction for the serial data is:

x̂(0) (k) =
(
1 − ea

)
{x(0)(1) −

b
a
}e−a(k−1) (13)

Where, x̂(0)(k) is the reduced value sequence of the original data.
When k > n, x̂(0) (k) is the predicted value of the model.

2.2.6. BPNN
BPNN was proposed in 1986 and is one of the more widely

used neural network models at this stage. The number of nodes in
the input and output of BPNN is determined according to the data
input category and the expected output category, respectively.
The number of nodes in the hidden layer can be determined
according to the empirical formula, and each layer is connected
by weights, and each node in the hidden layer and output layer
has a threshold value. The forward transfer process of the BPNN
model is performed by the following equation.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sj =

L∑
j=1

wij + bj

aj = f
(
sj
)

Pk =

N∑
k=1

wijaj + bk

tk = f (Pk)

(14)

Where x is the BPNN input value; wij is the weight value from the
input layer to the hidden layer; bj and bk are the thresholds of the
hidden layer and the output layer, respectively.sj and aj are the
input and output values of the hidden layer respectively; wjk is
the weight value between the hidden layer and the output layer;
pk and tk are the input and output values of the output layer; f (x)
is the neural network transfer function. The formulas of the error
function for error back propagation, the weights and threshold
correction factors are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi =

N∑
k=1

(yk − yk)
2

∆wjk = −η
∂Ep
∂wjk

∆wij = −η
∂Ep
∂wij

∆bk = −η
∂Ep
∂bk

∆bj = −η
∂Ep

(15)
∂bj
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f
g

i is the error function equation; N is the number of sample
roups; yk is the true value; yk is the BPNN output value; η is

the learning rate; ∆wij and ∆wjk are the correction coefficients;
∆bk and ∆bj are the threshold correction coefficients; Ep is the
node error.

2.3. The combined FM for residual error forecasting

SVR is used as the basic model for building energy consump-
tion forecasting. Assuming that the forecasted value of a basic
model at time point τ is Qbasic and the actual value is Qact , the
residual error Qe, can be written as:

Qe = Qbasic − Qact (16)

According to Eq. (16), if the Qe, at τ can be forecast by the
residual error FM, then Qbasic can be revised. Thus, the Qe at τ

is a forecasting problem (Yao et al., 2006).
Many single FMs can be used to construct a residual error FM.

However, every single FM has its own character and complex
practice, which makes the forecasting accuracy of Qe unsteady.
To improve the forecasting accuracy of Qe, two FMs, a and b,
are used to establish a residual error model. These models are
simultaneously employed to establish a combined FM and correct
the residual error.

For a certain forecasting problem, assume the residual error
in period t is Qe,t (t = 1, 2, . . . , n) and the forecasted values of
models a and model b are Qe,a and Qe,b, respectively. Suppose
the weight vector is W = [ωa, ωb]

T ; then, the residual error
combination FM can be expressed as follows:

Qe,t,combine = ωaQe,a + ωbQe,b (17)

Where Qe,a and Qe,b are the forecasting values of the residual
error from model a and model b, respectively, ωa and ωb are the
combination weights of the two FMs. Meanwhile, the following
constraint equations exist: ωa + ωb = 1.0, ωa ≥ 0, and ωb ≥ 0.

Various methods can be used to calculate the combination
weights. To dynamically optimize the combination weights ac-
cording to historical data, the least error square sum (LESS) is
used to determine the weights in the combined FM. The equiva-
lent equations can be expressed as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min Z =

m∑
i=1

(
Qe,t,combine (i) − Qe,t (i)

)2
s.t

ωa + ωb = 1.0

ωa ≥ 0, ωb ≥ 0

(18)

Suppose that the forecasting deviations of single models a and b
for residual error forecasting are given as follows:

εa = Qe,a − Qe,t (19)

εb = Qe,b − Qe,t (20)

The deviation of the combined FM, εcombine, can be obtained
as:

εcombine = Qe,t,combine − Qe,t = εaωa + εbωb (21)

Thus, Eq. (21) can be written in matrix form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min Z = W THW

s.t.

eTW = 1.0
T

(22)
W ≥ 0
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Where W = [ωa, ωb]T , e = [1, 1]T , and H =

[
ε2

a εaεb

εaεb ε2
b

]
.

The forecasting error sequences of the residual error FMs
of a and b are Qe,a and Qe,b, respectively, defined as Eq. (23)
and Eq. (24).

εa =
(
εa,1, εa,2, · · · , εa,n

)
(23)

εb =
(
εb,1, εb,2, · · · , εb,n

)
(24)

Because Qe,a and Qe,b are independent, the covariance be-
tween Qe,a and Qe,b is equal to zero according to statistical the-
ory (Clemen, 1989). That is, Eq. (25) can be obtained as follows:

Cov (εb, εa) = E {[εb − E (εb)] [εa − E (εa)]} = 0 (25)

For stationary series, their deviation series is white noise, and
the mathematical expectation is equal to zero (Zhang, 1991).
Therefore, Eq. (26) can be obtained as follows:

E (εb) − E (εa) = 0 (26)

By combining Eqs. (25) and (26), the following results can be
obtained:

E (εbεa) = Cov (εb, εa) =

(∑n
i=1 εb,iεa,i

)
n

= 0 (27)

Therefore, means
n∑

i=1

εb,iεa,i = 0 (28)

The Lagrange function is introduced to solve Equation (22), as
shown in Eq. (29):

L = W THW + λ
(
eTW − 1

)
(29)

Under the Kuhn–Tucker condition, Eq. (30) can be obtained by
solving Equation (29):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂L
∂W

= 2HW + λe = 0

∂L
∂λ

= eTW − 1 = 0
(30)

The weights ωa and ωb in the combined FM can be calculated
as:

W = [ωa, ωb]T =

(
H−1e

)(
eTH−1e

) (31)

According to Eqs. (17) and (31), the combined model can be built
to revise the forecasting result of the basic SVR model.

2.4. Forecasting error of the corrected basic model

Here, proofs of the accuracy improvement of the combination
of two different forecasting models are given. Denote the relative
forecasting error of model a as δEa and the relative forecasting
error of model b as δEb, The combined relative forecasting error,
δEz , can be expressed as:

δEz = ωaδEa + ωbδEb (32)

Denote the forecasted value of the basic model at time τ as Qbasic,t ,
and the actual value as Qact . The relative forecasting error of the
basic model δEbasic,act , can be written as:

δEbasic,act =

⏐⏐∆Ebasic,act
⏐⏐

(33)

Qact
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here ∆Ebasic,act is the actual residual error of the basic model at
ime τ . ∆Ebasic,act = Qbasic,f − Qact

When the combined FM is used to forecast the actual residual
rror, ∆Ebasic,act , the relative forecasting error δEz , can be written
s:

Ez =

⏐⏐∆Ez − ∆Ebasic,act
⏐⏐⏐⏐∆Ebasic,act

⏐⏐ (34)

here ∆Ez is the forecast residual error of the basic model for
the combined FM.

When ∆Ez is used to correct the forecasted value of the basic
model, the ultimate residual error of the basic model can be
expressed as:

∆Ecor = ∆Ebasic,act − ∆Ez (35)

hus, the relative forecasting error of basic model with combined
odel correction δE∗

basic , can be written as:

E∗

basic =

⏐⏐∆Ebasic,act − ∆Ez
⏐⏐

Qact
(36)

ccording to Eqs. (33), (34) and (36), the following equation can
e obtained:

E∗

basic =
δEz

⏐⏐∆Ebasic,act
⏐⏐

Qact
= δEzδEbasic (37)

n accordance with combination theory, Eq. (23) exists:

ax (δEa, δEb) ≥ δEz ≥ min (δEa, δEb) (38)

qs. (37) and (38) define the range of δE∗

basic as shown in Eq. (39):

ax (δEa, δEb) δEbasic ≥ δE∗

basic ≥ min (δEa, δEb) δEbasic (39)

ssume the following conditions: δEa < 1, δEb < 1
Then, Eq. (40) can be deduced from Eqs. (37) and (38):

δE∗

basic < δEbasic (40)

Eq. (40) shows that the forecasting accuracy of the basic model is
improved by the residual error correction in the combined FMs
(Andrawis et al., 2011; Chan et al., 2010; Martins and Werner,
2012). Eqs. (37), (38) and (40) indicate that the smaller the
relative error of the individual FM, the smaller the relative error
of the combined FM. The forecasting accuracy of the basic model
corrected by the combined residual error FM was improved.

2.5. Dynamical adjustment of single FM for combined residual fore-
casting model

According to the above derivation, the forecasting accuracy
can be improved after the modification of the residual error
combination forecasting. Different FMs, however, have diverse
characteristics and application scopes. In addition, when making
forecasting with different types of FMs, no model is likely to
reduce the forecasting error to zero, and the forecasting accu-
racy will be unstable due to the uncertainty and randomness
of the various factors affecting the system. Models of different
types often provide a variety of useful information. If a model
is abandoned because of its poor forecasting performance, some
useful information will be lost. Therefore, in the case of using the
same number of single FMs for combination forecasting, how to
select the single FMs to improve the forecasting accuracy will be
demonstrated below.
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2.5.1. Same number of options for combination forecasting
We take two single FMs as an example to investigate residual

error combination FMs with the same number of single FMs.
Four types of FMs are assumed to exist within some time

period, represented by 1, 2, 3 and 4. Their relative forecasting
errors are δE1, δE2, δE3 and δE4, respectively, which satisfy the
following conditions: δE1 ≤ δE3, δE1 ≤ δE4, δE2 ≤ δE3 and
E2 ≤ δE4.

E1 ≤ δE3 (41)

E1 ≤ δE4 (42)

E2 ≤ δE3 (43)

E2 ≤ δE4 (44)

Assume

1 + ω2 = 1 (45)

Where 0 ≤ ω1 ≤ 1, 0 ≤ ω2 ≤ 1;

ω3 + ω4 = 1 (46)

Where 0 ≤ ω3 ≤ 1, 0 ≤ ω4 ≤ 1;
According to Eqs. (41), (42), (43), (44), (45) and (46), the

following result can be obtained:

ω1δE1 + ω2δE2 ≤ ω1δE2 + ω2δE2
= δE2 ≤ δE3 = ω3δE3 + ω4δE3 ≤ ω3δE3 + ω4δE4 (47)

That is:

ω1δE1 + ω2δE2 ≤ ω3δE3 + ω4δE4 (48)

Where ω1, ω2, ω3, and ω4 are the weights of FM 1, FM 2, FM 3
and FM 4, respectively.

According to Eq. (32), Eqs. (49) and (50) can be obtained:

δEZ,12 = ω1δE1 + ω2δE2 (49)

δEZ,34 = ω3δE3 + ω4δE4 (50)

Combining Eqs. (48), (49) and (50), the following conditions
are given:

δEZ,12 = ω1δE1 + ω2δE2 ≤ ω3δE3 + ω4δE4 = δEZ,34 (51)

where δEZ,12 is the combined relative forecasting error based on
FM 1 and FM 2 and δEZ,34 is the combined relative forecasting
error based on FM 3 and FM 4.

Eqs. (52) and (53) can be obtained according to Eq. (37):

δE∗

basic,12 =
δEz,12

⏐⏐∆Ebasic,act
⏐⏐

Qact
= δEz,12δEbasic (52)

δE∗

basic,34 =
δEz,34

⏐⏐∆Ebasic,act
⏐⏐

Qact
= δEz,34δEbasic (53)

Combining Eqs. (51), (52) and (53) yields the following results:

δE∗

basic,12 ≤ δE∗

basic,34 (54)

After the residual error correction by different combinations, the
range of relative forecasting errors δE∗

basic , is given:

min (δE1, δE2) δEbasic ≤ δE∗

basic,12 ≤ max (δE1, δE2) δEbasic (55)

min (δE3, δE4) δEbasic ≤ δE∗

basic,34 ≤ max (δE3, δE4) δEbasic (56)

Eq. (42) is obtained by combining Eqs. (39), (40) and (41):

min (δE1, δE2) δEbasic ≤ δE∗

basic,12 ≤ max (δE1, δE2) δEbasic ≤

min (δE3, δE4) δEbasic ≤ δE∗

basic,34 ≤ max (δE3, δE4) δEbasic (57)
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he above derivation indicates that when a residual error combi-
ation forecasting model composed of the same number of single
Ms is used for forecasting, the final error can be reduced by
ombining the single FMs with smallest errors, thereby improving
he forecasting accuracy.

.5.2. Different number of options for combination forecasting
Assume that there are five types of FMs in some time period,

epresented by 1, 2, 3, 4 and 5, respectively, whose relative
orecasting errors are δE1, δE2, δE3, δE4 and δE5.

E1 = δE2 = δE3 = δE4 ̸= δE5 (58)

uppose that there are two combined residual error correction
Ms: the first model consists of single models 1 and 2 and the
econd consists of single models 3, 4 and 5.
Assume

1 + ω2 = 1 (59)

here 0 ≤ ω1 ≤ 1, 0 ≤ ω2 ≤ 1 and

ω3 + ω4 + ω5 = 1 (60)

Where 0 ≤ ω3 ≤ 1, 0 ≤ ω4 ≤ 1, 0 ≤ ω5 ≤ 1
According to Eq. (32), Eqs. (61) and (62) can be obtained:

δEZ,12 = ω1δE1 + ω2δE2 (61)

δEZ,345 = ω3δE3 + ω4δE4 + ω5δE5 (62)

where δEZ,12 is the combined relative forecasting error based on
FM 1 and FM 2, and δEZ,345 is the combined relative forecasting
error based on FMs 3, 4 and 5.

Assume E1 = δE2 = δE3 = δE4 ≤ δE5, the following result can
then be obtained:

δEZ,345 = ω3δE3 + ω4δE4 + ω5δE5 ≥ ω3δE3 + ω4δE3 + ω5δE3

= δE3 = δE2 = ω1δE2 + ω2δE2 = ω1δE1 + ω2δE2 = δEZ,12

(63)

Eq. (64) can be obtained by from Eq. (37):

δE∗

basic,345 = δEz,345δEbasic ≥ δEz,12δEbasic = δE∗

basic,12 (64)

Clearly, if δE1 ≤ δE2 ≤ δE3 ≤ δE4 ≤ δE5, Eq. (53) is obtained:

δE∗

basic,12 ≤ δE∗

basic,345 (65)

The above proof shows that when two single FMs and three single
FMs are used to form a combined FM to correct the basic model,
the two single FMs with small relative errors are chosen to have
higher forecasting accuracy than the combined FM composed of
three single FMs with large relative errors.

2.5.3. The method for dynamically adjusting single FMs for combi-
nation forecasting

As mentioned earlier, due to the different features of single
FMs and the randomness and uncertainty of some of the factors
affecting the forecasting accuracy, the performance of single FMs
is unstable. Therefore, in order to minimize those effects and get
a more accurate forecasting, we pose the method of dynamical
adjustment of single FM for combined residual error forecasting
model. That is, the two single FMs with smallest relative fore-
casting errors in the last forecasting period are chose to form
the combined residual error forecasting model in every current
forecasting period. So far, the FM with dynamically combined
residual error correction based on the optimal model combination
is built.
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2.6. Evaluation index

To evaluate the performance of forecasting models, four statis-
tical evaluation indicators were introduced include relative error,
MAE, MAPE and root mean square error (RMSE). The statistical
evaluation index reflects the degree of fit between the predicted
value and the actual value. MAE could avoid the problem of
cancelling errors, and thus can accurately reflect the size of the
actual forecast error. MAPE has more denominator yi than MAE.
MAPE equal to 0 indicates a perfect model, more than 1 means
inferior model (Yu et al., 2021). Moreover, compared with other
indicators, it can identify the impact of errors caused by outliers
on the accuracy of the model. RMSE is the quadratic root of the
ratio of the square of the deviation between the predicted value
and the actual value. RMSE is easier to identify large errors and
can describe the degree of dispersion of the predicted values. If
the maximum deviation is large, the RMSE will be enlarged.

Relative Error =

⏐⏐y∗

i − yi
⏐⏐

yi
(66)

AE =
1
n

n∑
i=1

⏐⏐y∗

i − yi
⏐⏐ (67)

MAPE =
1
n

n∑
i=1

⏐⏐⏐⏐y∗

i − yi
yi

⏐⏐⏐⏐ × 100% (68)

MSE =

√1
n

n∑
i=1

(
y∗

i − yi
)2 (69)

here yi represents the actual value, y∗

i represents the predicted
alue.

. Case analysis

.1. Project introduction

The case study is from an office building in Xi’an, a west-
rn city. The office building has 44 floors above ground and 3
loors underground, with a total construction area of 300000 m2

nd land area of 30000 m2. The wall structure of the building
dopts a concrete shear wall with shape coefficient of 0.8. The
uilding has deployed the environmental detection sensors and
nergy consumption collection system, which could collect out-
oor humidity, temperature and energy consumption data in real
ime (Yu et al., 2021).

.2. Data sources

The building energy consumption data collected from April 1,
021 to July 31, 2021, including hourly data of air conditioning
ower, motive power, special power and lighting socket power
onsumption. The data have been collected from 8 am to 22 pm
very day at per hour granularity. Fig. 2 shows the four types of
lectricity loads for the forecast period from July 29 to July 31
rom 8 a.m. to 22 p.m.

Meteorological data were included outdoor dry bulb tem-
erature, relative humidity, wind speed and intensity of solar
adiation. The data have been collected from 8 am to 22 pm
very day at per hour granularity. Fig. 3 shows the outdoor
eteorological information for the forecast period of July 29–
1, and the outdoor temperature change ranged from 20.8 ◦C to
4.6 ◦C. On the other hand, relative humidity, wind speed and
ntensity of solar radiation are affected by weather conditions and
ncertain factors. These meteorological factors are used as inputs
o the SVR model, and the real building energy consumption is
sed as an output.
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Fig. 2. Four types of electricity load for the forecast period from July 29 to 31.
Fig. 3. The outdoor meteorological information for the forecast period of July 29 to July 31.
The forecasting of energy consumption in an office building
s taken as an example to verify the accuracy of the FM with
ynamically combined residual error correction based on the
ptimal model combination. The six FMs adopted in this paper,
he SVR is regarded as the basic FM, ARIMA, BPNN, RFR, GM
nd MLR are used to construct the residual error combination
orecasting models.

Data are collected at hourly intervals, and the collection time
s from 8:00 am to 22:00 pm every day. The model construction
s divided into two parts: the first part is the construction of the
12450
SVR model. A total of 1360 sets of weather and building energy
data from April 1 to July 1 were used to train and validate the SVR
model. The SVR model was tested with data from July 1 to July
31, and 465 sets of SVR residual errors were obtained. The second
part is the forecasting of the residual values. A total of 420 data
residual errors from July 1 to July 28 were used as the training set,
and five single FMs were used to forecasting the residual errors
from July 29 to 31, respectively, and a combined residual error
FM was further constructed to correct the SVR model.
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Table 1
The errors of the five single FMs forecast for the residual error of SVR.
TIME Real ARIMA BPNN RFR GM MLR

residual
error of
SVR (kW)

Forecast
residual
error (kW)

Relative
error

Forecast
residual
error (kW)

Relative
error

Forecast
residual
error (kW)

Relative
error

Forecast
residual
error (kW)

Relative
error

Forecast
residual error
(kW)

Relative
error

7.29–8:00 −363.17 −148.73 0.59 −474.40 0.31 −474.40 0.30 −271.36 0.25 −296.85 0.18
7.29–9:00 −2248.08 −1280.73 0.43 −2063.45 0.29 −2063.45 0.08 −1844.60 0.17 −2718.08 0.20
7.29–10:00 −1285.80 −786.60 0.38 −1078.72 0.24 −1078.72 0.16 −1036.36 0.19 −950.58 0.26
7.29–11:00 −2800.33 −3517.65 0.25 −1667.22 0.40 −2192.13 0.21 −4006.75 0.43 −3517.65 0.25
7.29–12:00 −2665.31 −1697.63 0.36 −1772.96 0.33 −1718.67 0.35 −1184.18 0.55 −3804.71 0.42
7.29–13:00 2310.65 3119.48 0.35 3077.86 0.33 1906.27 0.17 2786.94 0.20 1609.76 0.30
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

7.31–17:00 3906.09 4987.56 0.27 2761.85 0.29 5204.89 0.33 3368.21 0.13 5125.28 0.31
7.31–18:00 5960.33 3103.43 0.47 7818.70 0.31 4176.86 0.29 3281.19 0.44 4183.18 0.29
7.31–19:00 2992,98 1460.89 0.51 3584.42 0.19 2161.64 0.27 3973.70 0.32 3832.01 0.28
7.31–20:00 970.43 1443.44 0.48 896.18 0.076 711.14 0.26 775.54 0.20 671.75 0.30
7.31–21:00 263.39 363.58 0.38 205.96 0.21 318.90 0.21 161.09 0.38 299.55 0.13
7.31–22:00 279.21 218.66 0.21 331.47 0.18 227.16 0.18 244.51 0.12 404.69 0.44
Fig. 4. The relative errors of the five single FMs forecast for the residual error
f SVR.

. Result and discussion

.1. Residual error forecasting

Fig. 4 shows the relative errors of the forecasting residual error
f the five single FMs. The forecast period runs from 8:00 a.m. to
2:00 p.m. on July 29–31, at hourly intervals, for a total of 45
orecast moments. Table 1 shows the forecasting results of five
ingle FMs for the residuals at some moments.
In the actual forecasting, the residual values of the basic model

t the forecast moment are not known. Therefore, it is not possi-
le to dynamically select a single FM based on the relative error
agnitude of the single FM. However, it is possible to select the
ingle FM that constitutes the combined forecasting model at the
urrent forecasting moment based on the relative error of the
ingle FM at the previous forecasting moment. The single model
ith a small relative error at the previous time is selected to

orm the combined residual error correction forecasting model
t the current time. The 2, 3 and 4 single forecasting models
ith the smallest relative errors are selected to form a dynamic
ombination of residual error models for SVR correction. (defined
n the following as SVR-2 Single FMs, SVR-3 Single FMs, SVR-
Single FMs) Finally, the building energy consumption value

orecast by the SVR were corrected. The model is deployed in

ython 3.7 of win10, a 64-bit operating system.
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4.2. Building energy consumption forecast results

Fig. 5 shows the forecast building energy consumption after
correcting SVR by different models. There are eight combination
forecasting models in Fig. 5. Five fixed models forecast residuals
and correct SVR.(SVR-ARIMA, SVR-BPNN, SVR-RFR, SVR-GM, SVR-
MLR), Three dynamic combination models to forecast residuals
correction SVR.

Fig. 6 presents the relative forecasting error of SVR corrected
by different FMs. The relative errors of the uncorrected SVR
forecasts ranged from 6%–45%. The forecasting accuracy after
correcting the SVR by different single models varied, with the
mean relative error ranging from 5%–7%. The forecasting accuracy
was significantly improved after correcting the residuals of SVR
by the single model. The mean relative error of the dynamic
combined model corrected SVR is about 3%, which is higher than
the forecasting accuracy of the fixed model corrected SVR.

Fig. 7 shows the weights of the two single FMs in Fig. 6 that
constitute the dynamic combined residual error FM. Fig. 8 shows
the weights of the three single FMs in Fig. 6 that constitute the
combined residual error FM. Fig. 9 shows the weights of the four
single FMs in Fig. 6 that constitute the dynamic combined residual
error FM.

Figs. 7–9 show that the weights of different single FMs are
not constant. They also show that the bigger is the relative errors
of forecasting model, the less is the corresponding weight.

Fig. 10 shows the curves of the relative forecasting errors of
SVR corrected by three types of dynamically combined residual
error model. The forecasting accuracy of the dynamic combina-
tion of two single FMs to correct SVR is better than that of using
three and four single FMs. The relative error is between 1%–7%
when correcting SVR using a dynamic combined residual model.
The forecasting performance is better than that of correcting SVR
using a fixed single FM.

Fig. 11 and Table 2 show that the FMs with dynamically
combined residual error correction, the forecasting accuracy de-
creases with increasing number of single FMs that constitute the
residual error combination FM. In this case, when multiple single
FMs with known relative forecasting errors are considered, two
is the optimal number of models that is used to construct the
residual combination FM. Therefore, selecting the two single FMs
with the smallest relative error will minimize the final error of
the combination model.

Table 2 shows that the accuracy of the SVR forecasting model

is significantly improved by residual error correction. The MAE,
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Fig. 5. Forecast building energy consumption after correction of SVR by different kinds of models.
Fig. 6. Relative errors in forecasting building energy consumption after correcting SVR for different kinds of models.
Fig. 7. The weights of the two single FMs constituting the dynamic residual
errors combination FM.

MAPE and RMSE of the dynamic combined RE correction model
using two single FMs to correction are 349.37, 0.0296 and 471.44,
which is less error than the combined residual error correction
model using three and four FMs, and also have more less error
than other FMs in Table 2.
12452
Fig. 8. The weight values of the three single FMs constituting the dynamic
residual errors combination FM.

To further verify the effectiveness and generalization ability
of the model proposed in this paper, BPNN was selected as the
basic forecasting model, and the residual values of BPNN were
forecasted by the other five single models, and the final forecast-
ing values of BPNN were improved after the residual correction.
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Fig. 9. The weight values of the four single FMs constituting the dynamic
esidual error combination FM.

Fig. 10. Error analyses on SVR with dynamical residual errors combined
correction based on two, three and four single FMs.

Fig. 11. Performance comparison of dynamically combined 2, 3 and 4 single
FMs correction SVR.

Table 3 shows the forecasting results of different correction meth-
ods. BPNN-2 Single FMs has the lowest forecasting error, and its
MAE, MAPE, and RMSE are 401.33, 0.0332, and 434.45, respec-
tively. From the forecasting results of BPNN-2 Single FMs, BPNN-3
Single FMs, and BPNN-4 Single FMs, it can be obtained that the
best forecasting results are obtained by choosing the two single
models with the smallest relative errors to form a combined
model to correct the BPNN, which is the same as the conclusion
proved in Section 2.4.
 F
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Table 2
Error analysis between different forecasting models.
Forecasting methods MAE MAPE RMSE

SVR 1918.59 0.1580 2278.74
SVR-ARIMA 790.36 0.0684 898.01
SVR-BPNN 623.97 0.0563 779.43
SVR-MIR 587.35 0.0517 703.23
SVR-GM 558.96 0.0491 677.31
SVR-REF 543.87 0.0488 643.12
SVR-4 Single FMs 422.07 0.0346 533.45
SVR-3 Single FMs 389.12 0.0320 498.98
SVR-2 Single FMs 349.37 0.0296 471.44

Table 3
Error analysis between different forecasting models.
Forecasting methods MAE MAPE RMSE

BPNN 2338.44 0.1673 2566.72
BPNN-ARIMA 860.42 0.0702 992.13
BPNN-SVR 793.32 0.0639 864.24
BPNN-MIR 627.54 0.0677 783.04
BPNN-GM 599.04 0.0571 664.92
BPNN-REF 593.87 0.0588 743.12
BPNN-4 Single FMs 501.30 0.0496 585.65
BPNN-3 Single FMs 444.42 0.0435 508.32
BPNN-2 Single FMs 401.33 0.0332 434.45

4.3. The Kolmogorov–Smirnov predictive accuracy (KSPA) test

The Kolmogorov–Smirnov predictive accuracy (KSPA) test is
a supplemental statistical test used to determine the accuracy
of two sets of forecasts. The first part of the KSPA test is the
two-sample two-side KSPA test, which determines whether the
distribution of the two forecast errors is statistically significant.
The second part is a two-sample one-sided KSPA test, which
determines whether the forecast with the smallest error also has
a smaller random error than the competitor’s forecast based on
the loss function. Thus, the forecasting accuracy of the models can
be compared (Fan et al., 2022).

First, a two-sample bilateral KSPA test was used to determine
whether there was a statistically significant difference between
the two distributions of prediction errors. The original hypoth-
esis is that there is no significant difference between the two
statistical forecasts. The original hypothesis is rejected when the
bilateral KSPA test observation sample test statistic is less than
(usually) 1%, 5%, or 10% (Fan et al., 2021). In this case, a statisti-
cally significant difference is inferred between the distributions of
the forecasts made by the models used, which indicates that there
is a statistically significant difference between the two forecasts
based on the bilateral KSPA test. The purpose of the two-sample
one-sided KSPA test is to determine whether a model based on
the minimum error of the loss function has a smaller random
error forecasting model compared to other model.

KSPA test results show that the two sided (p-value) of the
VR-2 Single FMs with other methods are <0.01 *. The value of
ne sided (p-value) is <0.01 * (* indicates that SVR-2 Single FMs
re statistically significant based on a p value of 0.01). First, it
onfirms the statistically significant differences between the pro-
osed forecasting model and the eight comparison models. Then a
ne-sided KSPA test is used to determine the proposed model and
o compare the low random errors reported by the predictions.
he results show that the proposed model has the greatest fore-
asting performance. The prediction results obtained using SVR-2
ingle FMs outperformed the other compared forecasting models.
ignificant differences were found between the proposed model
nd the comparative models. The KSPA test error distribution and
he empirical cumulative distribution function(c.d.f.) are given in

igs. 12 and 13. The dynamic combination residual correction



Z. Feng, M. Zhang, N. Wei et al. Energy Reports 8 (2022) 12442–12455

m
t
s

5

t

Fig. 12. Distribution of errors.
Fig. 13. Empirical Cumulative Distribution Function of Error (c.d.f.).

odel based on the optimal combination approach proposed in
his paper better describes the random deviation, resulting in
maller errors and higher forecasting accuracy.

. Conclusions

This paper describes the study of the optimal combined FM for
he dynamic combined residual correction model, including the
12454
method of selecting the single FM and determining the optimal
number of single forecasting model for constructing the com-
bined residual model. The following conclusions are obtained:

(1) Combining the combined residual forecasting model with
the residual correction model can effectively improve the basic
model forecasting accuracy and generalization ability.

(2) Dynamic combined residual forecasting model corrected
SVR performs better than fixed single forecasting model corrected
SVR.

(3) The basis for selecting the combined residual FM is ob-
tained through mathematical derivation. It is verified by example
that the two single FMs with the smallest relative error can form
the optimal combined residual FM to minimize the forecasting er-
ror of the basic model. The corrected SVR can effectively improve
the accuracy of energy consumption forecasting in office building.

(4) In the combination residual forecasting model, the weights
of single FMs change with the forecasting accuracy. The larger
the relative error of a single forecasting model, the smaller the
corresponding weights, and vice versa, the larger the weights.
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