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Energy Saving Optimization
of Chilled Water System
Based on Improved Fruit Fly
Optimization Algorithm
As the main energy consumption part of the central air-conditioning system, the energy
saving of the chilled water system is particularly important. In this paper, an improved
fruit fly optimization algorithm (IFOA) is used to optimize the operating parameters of
the chilled water system to reduce the energy consumption of the chilled water system. In
IFOA, the 3-D position coordinate is introduced to expand the search space of the algo-
rithm, the variable-step strategy balances the global search ability and local search
ability of the algorithm and helps a single fruit fly jump out of the local optimization
through chaos mapping. In order to verify the optimization effect of IFOA on the chilled
water system, the energy consumption model of the chilled water system is established.
With the lowest total energy consumption of the system as the goal, the operating parame-
ters such as the chilled water supply temperature and the speed ratio of the chilled water
pump are optimized. The simulation results show that the energy-saving optimization
method of a central air-conditioning chilled water system based on IFOA can make the
average energy-saving rate of the system reach 7.9%. Compared with other optimization
algorithms, the method has a better energy-saving effect and is more stable.
[DOI: 10.1115/1.4062359]
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1 Introduction
In the past decades, the rapid development of society has con-

sumed a large amount of nonrenewable energy and emitted a
large number of greenhouse gas into the atmosphere, leading to
the rise of global temperature and the destruction of the earth’s envi-
ronment. In 2021, China’s total energy consumption will reach 5.24
billion tons of standard coal, and carbon emissions will reach 11.47
billion tons, an increase of 5.15% and 1.5% respectively compared
with 2020 [1]. There is still a big gap between China’s total energy

consumption and the main goal in the Opinions on Completely,
Accurately and Comprehensively Implementing the New Develop-
ment Concept to Do a Good Job in Carbon Peak and Carbon Neu-
tralization issued by the CPC Central Committee and the State
Council in 2021 [2]. Reducing social energy consumption is the
key to achieving this goal. Studies indicate that building energy
consumption accounts for 30–40% of total social energy consump-
tion, and this value will continue to grow rapidly in the foreseeable
future [3]. Therefore, energy efficiency studies of existing buildings
are needed to achieve the goal of reducing building energy
consumption.
Among the energy consumption of buildings, the energy con-

sumption of the air-conditioning system occupies 40–60% or
even more, which has great potential for energy saving [4]. The
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chilled water system is the most important energy consumption part
of the air-conditioning system, and its operating energy consump-
tion accounts for about 60% of the total energy consumption of
the air-conditioning system [5,6]. Therefore, it is of great signifi-
cance to conduct energy conservation research on the chilled
water system. At present, researchers have conducted in-depth
studies on the energy saving of central air-conditioning systems.
Zhou et al. [7] proposed a PCA-ANN-based energy-saving
control strategy to optimize the operation of central air-conditioning
systems in subway stations, which can reduce air-conditioning
operation energy consumption of subway stations by 10.5%. Yu
et al. [8] proposed a variable frequency strategy for cooling tower
fans and pumps, which can make the air-conditioning system oper-
ating energy consumption by 5.3%. Wijaya et al. [9] based on the
EnergyPlus model, an optimization method combining an artificial
neural network and genetic algorithm proposed to improve the effi-
ciency of the air-conditioning system by dynamically optimizing
the chilled water flow, thereby reducing the system energy con-
sumption. Deng et al. [10] analyzed the influencing factors and
characteristics of energy consumption of chilled water systems, pro-
posed a system optimization method considering internal and exter-
nal factors and their synergistic effects, and applied it to a high-rise
office building and achieved considerable energy-saving effect. Yu
et al. [11] proposed a distributed optimization based on a new dis-
tributed control structure and alternating direction multiplier
method with regular terms algorithm to achieve a dynamic hydrau-
lic balance of the chilled water system with minimum energy con-
sumption. This method can save 28.54% of energy compared to the
unfertilized operation strategy. Shi et al. [12] developed a control
strategy for chilled water systems by establishing an approximate
optimal performance diagram of the chilled water system equip-
ment. The strategy has significant advantages over the two existing
control strategies.
In recent years, swarm intelligence optimization algorithms have

gradually emerged, which are widely used in various fields of engi-
neering and natural sciences because of their simplicity of opera-
tion, ease of understanding, flexibility, superiority-seeking ability,
and robustness. Du et al. [13] used a residual neural network to
build an optimization model for chillers and introduced the gray
wolf optimization algorithm to optimize the controllable variables
of chillers to reduce the system energy consumption. Kusiak et al.
[14] used a data mining algorithm to establish a nonlinear relation-
ship between energy consumption and control parameters, modeled
equipment such as pumps and fans, and solved it by a particle
swarm optimization algorithm. The results showed that the operat-
ing energy consumption of the air-conditioning system was reduced
by 7%. Jiao et al. [15] established a power consumption model for
chilled water pumps and air-conditioning fans and proposed an
energy-saving optimization method for air-conditioning systems
based on an improved ant colony algorithm. The results showed
that the method has a good energy-saving effect and has some
advantages. Chen et al. [16] established the energy consumption
models of chilled water pumps and fans and used a particle
swarm optimization algorithm to establish an energy consumption
optimization model as a way to reduce the energy consumption of
the air-conditioning system. Ma et al. [17] used the recursive least
squares method to identify the model parameters of air-conditioning
system equipment and used a genetic algorithm for a central air-
conditioning system energy consumption optimization using a
genetic algorithm. The results showed that the method can save
0.73–2.55% of energy compared to the conventional scheme.
The fruit fly optimization algorithm (FOA) is a new intelligent

optimization algorithm proposed by Dr. Wenchao Pan et al. [18]
in Taiwan, China, based on the foraging behavior of the fruit fly
population. Compared with other intelligent optimization algo-
rithms, FOA is less computationally intensive, has a shorter
running time, and has a better global foraging ability, but it is
prone to premature maturation and other phenomena during opera-
tion, so it needs to be improved to obtain better foraging results.
Yang et al. [19] introduced Gaussian variation and orthogonal

learning into FOA to enhance the diversity of the population,
which can effectively avoid premature convergence. Qi et al. [20]
proposed a linear generation mechanism to uniformly generate can-
didate solutions, used a new variable-step method to balance the
searchability of the algorithm in different periods, and verified the
stability of the improved algorithm in three practical cases. Guo
et al. [21] introduced two concepts of sensitivity and pheromone
to improve the optimization strategy and location update method
of FOA, which improved the diversity of the population as well
as the local search ability. Chen et al. [22] introduced a random
swimming mechanism in FOA to dynamically adjust the position
of fruit fly populations and reduce the influence of the initial popu-
lation position, thus enhancing the global optimization ability.
The aforementioned literature provides feasible directions for

chilled water system optimization, but most of the studies on
energy-saving optimization of chilled water systems are based on
local optimization of individual equipment, lacking a systematic
analysis of the synergistic operation between different equipment
under actual cooling demand [23,24]. Therefore, in this paper,
from the perspective of global energy saving of chilled water
systems, the energy consumption model of chilled water system-
related equipment is established, and the operating parameters of
the system are optimized using the improved fruit fly optimization
algorithm with controllable variables as optimization parameters to
reduce the energy consumption of the system.

2 Research Methodology
In this paper, central air-conditioning system experimental equip-

ment is used as the research object, which consists of a chiller,
chilled water pump, cooling water pump, fan coil, cooling tower,
and data acquisition system [25]. The data acquisition equipment:
indoor and outdoor temperature and humidity sensors, wind speed
sensors, multifunctional electric meters, electromagnetic flowme-
ters, and digital pressure gauges, which can collect the temperature,
pressure, and flowrate of the system in real-time. The structure
diagram of the experimental system is shown in Fig. 1.
The research framework of this paper is shown in Fig. 2, and the

main steps are: (1) Obtain the real-time operational data of the exper-
imental equipment of the central air-conditioning system through the
data acquisition equipment. (2) Establish the equipment energy con-
sumption model of the chilled water system. Identify the unknown
parameters of the model using the least squares method in MATLAB,
and verify the validity of the model. (3) With the minimum energy
consumption of the chilledwater system as the target and the control-
lable parameters as the decision variables, the system is optimized
using IFOA to obtain the minimum energy consumption of the
central air-conditioning chilled water system and its parameter set-
tings under the condition of satisfying the system cooling demand.

3 Problem Description
A typical chilled water system consists of chillers, chilled water

pumps, and other equipment. In the system, the chiller provides
low-temperature chilled water for the system, and the chilled
water flow is controlled by the chilled water pump to deliver it to
the central air-conditioning terminal equipment for heat exchange
with indoor air, and the chilled water returns to the chiller after com-
pleting the work, thus continuously circulating to achieve the indoor
cold load demand. The working principle of the chilled water
system is shown in Fig. 3.

3.1 Chiller Energy Modeling. The chiller is the most energy-
consuming equipment in the chilled water system of central air-
conditioning, and its main role is to transfer the heat of chilled
water to cool water, to achieve the purpose of cooling. According
to the chiller plant energy consumption model proposed by
ASHRAE Handbook [26], the chiller plant energy consumption is
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related to the unit load and evaporation temperature. The energy
consumption model of the chiller unit can be expressed as follows:

Pchiller = a1 + b1Q + c1Q
2 + d1(Tcws − Tchws) + e1(Tcws − Tchws)

2

+ f1Q(Tcws − Tchws) (1)

where Pchiller is the energy consumption of the chiller, W ·Q is the
chiller cooling capacity, W · Tcws is the supply temperature of

cooling water, °C ·Tchws is the supply temperature of chilled
water, °C · a1, b1, c1, d1, e1, f1 is the model parameters of chiller.

3.2 Refrigeration Water Pump Energy Consumption
Modeling. The chilled water pump delivers chilled water to the air-
conditioning end equipment to provide cooling capacity for the air-
conditioning end equipment. The flowrate of chilled water affects

Fig. 1 Central air conditioning structure schematic

Fig. 2 Research framework
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the cooling capacity, if the chilled water flowrate is too small, it
cannot meet the load requirements of the air-conditioning end; if
the chilled water flowrate is too large, the energy consumption of
the chilled water pump increases, resulting in energy waste. Accord-
ing to the chilled water pump energy consumption model proposed
by ASHRAE Handbook [26], the energy consumption of a chilled
water pump is related to the flowrate of chilled water, the head of the
pump, and the pump efficiency. The energy consumption model of
a chilled water pump can be expressed as

Ppump = a2rchw
2 + b2rchw · mchw + c2mchw

2 +
d2
rchw

· mchw
3 (2)

where Ppump is the energy consumption of the chilled water pump,
W ·mchw is the actual flowrate of the chilled water pump, m3/h · rchw
is the chilled water pump speed ratio. a2, b2, c2, d2 is the model
parameters of the chiller pump.

3.3 Chilled Water Subsystem Energy Consumption
Modeling. The equipment optimization problem of the chilled
water system can be described as adjusting the operating parameters
of each piece of equipment to minimize the total energy consump-
tion of the system equipment under the condition of meeting the
load demand. The decision variables of the central air-conditioning
chilled water system need to meet the requirements of easy adjust-
ment and high correlation with the energy consumption of the
system equipment, so the chilled water supply temperature and
the speed ratio of the chilled water pump are selected as the optimi-
zation variables in this paper. In order to ensure that the chilled
water system can operate safely and stably, and to calculate the
combination of parameters that meet the actual operation rules,
the optimization problem should satisfy the following constraints.
Among them, the inequality constraint includes chilled water
supply temperature constraint, chilled water pump speed constraint,
and the equation constraint is mainly the energy balance relation-
ship inside the chiller unit. In summary, the energy consumption
model of the central air-conditioning chilled water system is

min (P) � optimal(Tchws, rchw)

P = Pchiller + Ppump

Tchwsmin ≤ Tchws ≤ Tchwsmax

0 ≤ rchw ≤ 1

Q = mchw · cwater · (Tcws − Tchws)

⎧⎨
⎩

(3)

where P is the energy consumption of the chilled water
system, W · cwater is the specific heat capacity of water,
4.18 kJ/kg m3 · Tchwsmin is the lower limit of chilled water supply

temperature. Tchwsmax is the upper limit of chilled water supply
temperature.

4 Improved Fruit Fly Optimization Algorithm
4.1 Basic Fruit Fly Optimization Algorithm. The fruit fly is

widely found in the temperate tropics around the world. Compared
with other organisms, the fruit fly has a more developed sense of
smell and vision. They rely on their acute sense of smell to find
the location of food, share it with other individuals or receive infor-
mation from other individuals to obtain the location of the individ-
ual with the best smell, and use their developed vision to fly to that
location to form the center of a new group of fruit fly, and so on until
they find food. The process of fruit flies searching for food is shown
in Fig. 4.
Based on the characteristics of the fruit fly population foraging

behavior, Dr. Wenchao Pan from Taiwan, China proposed a
novel bionic-like meta-heuristic intelligent optimization algorithm,
the fruit fly optimization algorithm (FOA), in 2012 [18]. The stan-
dard FOA is divided into two parts, olfactory search and visual
search, and its general steps are as follows:

Step 1: Initialize the fruit fly population. Given the fruit fly pop-
ulation size (Sizepop), the maximum number of iterations
(Maxgen), and the search step (R), randomly initialize the
fruit fly population locations X axis, Y axis.

Step 2: Fruit fly individuals perform the olfactory search. Each
fruit fly individual is given a random search direction and
searches distance by Eq. (4)

Xi = X axis + RandomValue
Yi = Y axis + RandomValue

{
(4)

Step 3: Since the food location is unknown, the distance (Dist)
between the individual fruit fly and the coordinate origin is

Fig. 3 Chilled water circulation system

Fig. 4 Search for food by Fruit fly populations
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first calculated by Eq. (5), and then the smell concentration
judgment value (S) is calculated by Eq. (6)

Disti =
�����������
(X2

i + Y2
i )

√
(5)

Si = 1/Disti (6)

Step 4: Bring the smell concentration judgment value (S) into the
smell concentration determination function (fitness func-
tion), and calculate the smell concentration (Smell) for indi-
vidual fruit fly by Eq. (7)

Smelli = Function(S)i (7)

Step 5: Identify the individual with the best flavor concentration
value within the fruit fly population

[bestSmell, bestIndex] =min (Smell) (8)

Step 6: The optimal flavor concentration value and its location
information are retained, and the other individuals within
the population fly toward the location by visual search

Smellbest = bestSmell
X axis = X(bestIndex)
Y axis = Y(bestIndex)

⎧⎨
⎩ (9)

Step 7: Enter the iterative optimization search, repeat Steps 2 to 5,
and determine whether the optimal flavor concentration
value of the contemporary generation is better than that of
the previous generation, if yes, then execute Step 6.

The flowchart of the fruit fly optimization algorithm is shown in
Fig. 5.

4.2 Improved Fruit Fly Optimization Algorithm. Wu et al.
[27] compared the optimization performance of FOA with the ant
colony algorithm (ACO), artificial fish swarm algorithm (AFSA),
immune algorithm (IA), genetic algorithm (GA), and particle
swarm optimization (PSO), and the results are shown in Table 1.
From Table 1, it can be seen that FOA is less computationally

intensive and has a shorter running time, higher convergence accu-
racy, faster convergence, and strong global optimization-seeking
capability compared to other optimization algorithms.
Although FOA has many advantages, it still has some drawbacks:

(1) The initial positions of fruit fly populations are generated
randomly, and this randomness can produce improper selec-
tion, which leads to slow convergence and a tendency to fall
into local optima.

(2) In the basic FOA, the search step is a fixed value, and if the
search step is small, it will lead to slow convergence and
easy to fall into local optimum; on the contrary, a larger
search step, strong oscillation in the late iteration and
reduced local search ability.

(3) According to Table 1, it can be seen that the FOA is not very
stable.

Based on the above problems, this paper introduces 3-D position
coordinates, Arnold Cat Map and variable-step size strategy to
improve FOA, and proposes an improved fruit fly optimization
algorithm (IFOA) to improve the local search ability and the
ability to jump out of the local optimum of FOA.
4.2.1 Three-Dimensional Coordinates. In real life, fruit fly

individuals move in 3-D space, and they usually have a large
search space to find food easily; however, the fruit fly individuals
in FOA search in 2-D space, which reduces the search space of
the fruit fly population. Therefore, Pan et al. [28] extended the coor-
dinates of fruit fly individuals into 3-D space, and the location coor-
dinates of the fruit fly population in 3-D became X axis, Y axis and
Z axis. The formula for determining the smell concentration judg-
ment value (S) in IFOA became

Disti =
�����������������
(X2

i + Y2
i + Z2

i )
√

(10)

Si = 1/Disti (11)

4.2.2 Chaotic Mapping. When performing the initialization of
the algorithm, the initial positions of the fruit fly population are gen-
erated randomly, and this randomness often produces improper
selection, which leads the algorithm to fall into the local optimum
easily. In order to improve the solution accuracy and convergence
speed of the algorithm, this paper introduces chaotic mapping to
improve the performance of the algorithm by generating an initial
population that can be uniformly spread across the solution space
with the help of the randomness and ergodicity of chaotic mapping.
Arnold Cat Map is a discrete chaotic model proposed by the

Russian mathematician Vladimir, so named because of the frequent
use of a cat face demonstration [29]. Its 2-D mapping form can be
expressed as

xn+1
yn+1

[ ]
=

1 1
1 2

[ ]
xn
yn

[ ]
mod 1 (12)

Defining the matrix C =
1 1
1 2

[ ]
, the determinant C has a value

of 1. This method can generate points with nonoverlapping,
uniform distribution, and good diversity, and the distribution of
generated points in 2-D space is shown in Fig. 6.
Extending the 2-D Arnold Cat Map to 3-D by introducing two

control parameters u and v, the 2-D mapping can be expressed as

xn+1
yn+1

[ ]
=

1 u
v uv + 1

[ ]
xn
yn

[ ]
mod 1 (13)

Extending the mapping to the 3-D plane and making 2-D map-
pings in the x–y, y–z, and x–z planes in turn, and connecting the
equations yields

xn+1
yn+1
zn+1

⎡
⎣

⎤
⎦ = A

xn
yn
zn

⎡
⎣

⎤
⎦mod 1 (14)

Fig. 5 Standard FOA schematic flowchart
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In the formula

A=
1 uz 0
vz uzvz + 1 0
0 0 1

⎡
⎣

⎤
⎦ ·

1 0 0
0 1 ux
0 vx uxvx + 1

⎡
⎣

⎤
⎦ ·

1 0 0
0 1 uy
vy 0 uyvy + 1

⎡
⎣

⎤
⎦

(15)

where ux, uy, uz, vx, vy, vz are integers, when ux= uy= uz= vx= vy=

vz= 1, A=
2 1 3
3 2 5
2 1 4

⎡
⎣

⎤
⎦, the expression of the 3-D Arnold transfor-

mation is

xn+1
yn+1
zn+1

⎡
⎣

⎤
⎦=

2 1 3
3 2 5
2 1 4

⎡
⎣

⎤
⎦ xn

yn
zn

⎡
⎣

⎤
⎦mod 1 (16)

4.2.3 Dynamic Step Strategy. In FOA, fruit fly individuals
move around according to a fixed step size each time, and the
size of the fixed step size will directly affect the performance of
individuals in acquiring target source accuracy. If the step size is
set too large, the algorithm will speed up the global exploration
and improve the convergence speed at the early stage of the iterative
search, but when the algorithm enters the late stage of the iterative
search, it needs to conduct a fine search in the local area to improve
the convergence accuracy, and an overly large step size will miss
the global optimum or fall into the local optimum. If the step size

is set too small, although it can improve the search accuracy in
the late stage of the algorithm, it cannot provide faster search
speed in the early iteration. Therefore, the dynamic variable-step
size strategy is proposed in this paper.
The rate of change of the concentration difference (Rate) was

introduced as the basis for determining the step of change. The
rate of change of concentration difference was obtained by compar-
ing the difference between the best and worst concentration values
of the fruit fly population during the iterative process with that of the
previous generation population, and the formula was calculated as

Rate =
best(Smelli) − worst(Smelli)

best(Smelli−1) − worst(Smelli − 1) + λ

∣∣∣∣
∣∣∣∣ (17)

where λ is a smaller positive number used to regulate the denomi-
nator to avoid a denominator of 0.
A larger search step should be used to speed up the global search

when it is in the early iteration, and a smaller search step should be
used to refine the local search when it is in the late iteration. When
the rate of change of concentration difference is outside the stable
change interval, increase the search step size to speed up the
global search rate. When the rate of change of concentration differ-
ence is in the stable change interval, it means that the fruit fly pop-
ulation enters the late iteration and starts to fine search, so it is
necessary to reduce the search step appropriately. The formula for
the change of step length of individual fruit flies is shown in
Eq. (18)

Rgen = Rgen−1 −
Rgen−1 arctan 20 · gen

Maxgen
− p

( )
+ arctan (q)

( )
arctan (20 − q) + arctan (q)

, Rate ∈ [α, β]

Rgen = Rgen−1 +
Rgen−1 arctan 20 · gen

Maxgen
− p

( )
+ arctan (q)

( )
arctan (20 − q) + arctan (q)

, Rate ∉ [α, β]

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Table 1 Performance comparison of different optimization algorithms

Algorithm

Performance

Complexity Astringency Calculation volume Global optimization search Local advantage search Stability

FOA Simple Precocious Smaller Very strong Weaker Unstable
ACO More complex Not easy for precocious Moderate Stronger Stronger More stable
AFSA More complex Not easy for precocious Larger Stronger Moderate More stable
IA Very complex Not easy for precocious Very large Very strong Very strong Very stable
GA Very complex Precocious Larger Very strong Weaker More stable
PSO Simple Not easy for precocious Moderate Stronger Moderate Unstable

Fig. 6 Arnold Cat Map: (a) Arnold Cat Map distribution and (b) Arnold Cat Map frequency distribution
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where α and β are the boundary values of the stable change interval.
R is the population search step. gen is the current iteration number.
Maxgen is the maximum iteration number. q and p are the adjust-
ment coefficients to control the decay of the curve.
Based on the new step update strategy, the step change curves of

individual Drosophila are shown in Fig. 7 (with the decreasing step
stage). According to Eq. (18), it can be seen that the values of the
regulation coefficients p and q affect the decay rate of the curve.
In order to obtain a better decay effect, we compared several differ-
ent combinations of the values of p and q. The results show that the
curve can achieve the best decay effect when p= 8 and q= 6. Based

on the new step update strategy, the step change curves of Droso-
phila individuals are shown in Fig. 7 (taking the step-decreasing
stage as an example). According to Eq. (18), it can be seen that
the values of regulation coefficients p and q affect the decay rate
of the curve. In order to obtain a better decay effect, we compared
several different combinations of the values of p and q. The
results showed that the curve could achieve the best decay effect
when p= 8 and q= 6.

4.2.4 Think Beyond the Local Optimum. The above improve-
ments improve the search speed and the search accuracy of the
algorithm and reduce the probability of falling into a local
optimum, but it still cannot avoid it from falling into a local
optimum. Therefore, Arnold Cat Map is introduced again to help
the algorithm escape from the local optimum. Set a threshold
value δ, and judge whether the algorithm falls into the local
optimum based on the size relationship between the variance
value σ2 and δ the test concentration of the fruit fly population.
The smaller δ, the denser the population distribution is, the lower
the population diversity is, indicating that the algorithm may fall
into the local optimum at this time. The calculation formula for
σ2 is shown in Eq. (19)

σ2 =
∑Sizepop
i=1

Smelli −
∑Sizepop
i=1

Smelli/Sizepop

( )( )2/
Sizepop (19)

When σ2≤ δ, it is concluded that the algorithm falls into a local
optimum, and then the update strategy for the next iteration is
changed so that all individuals no longer search around the
optimal position, but choose to update the individual positions
according to the Arnold Cat Map operation to jump out of the
local optimum. The position update formula for fruit fly individualsFig. 7 Step length change curve

Fig. 8 IFOA flowchart
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to jump out of the local optimum is shown in Eq. (20)

Xi = Xi + CAT
Yi = Yi + CAT
Zi = Zi + CAT

⎧⎨
⎩ (20)

where CAT is a cat mapping of the position coordinates of the indi-
vidual fruit flies.

4.2.5 IFOA Steps. The steps of IFOA are as follows:

Step 1: Initialize the fruit fly population. Given the population
size (Sizepop), the maximum number of iterations
(Maxgen), and the 3-D location coordinates of the initialized
individuals by cat mapping X axis, Y axis, Z axis.

Step 2: Obtain the smell concentration judgment value (S) by
Eqs. (10) and (11), and calculate the individual smell concen-
tration (Smell).

Step 3: Calculate the smell concentration variance of the fruit fly
population σ2 from Eq. (19) and determine whether the pop-
ulation is trapped in a local optimum. If the population is
trapped in the local optimum, Arnold Cat Map is performed
according to Eq. (20) to jump out of the local optimum and
calculate the individual smell concentration (Smell).

Step 4: Find the individual with the minimum smell concentra-
tion in the fruit fly population.

Step 5: The optimal flavor concentration value and its location
information are retained, and the other individuals within
the population fly toward the location by visual search.

Step 6: Enter the iterative search for superiority and repeat
Steps 2∼4. The search steps of individual fruit flies are deter-
mined by Eqs. (17) and (18), and determine whether the
optimal flavor concentration value of the current generation

is better than that of the previous generation and if so,
perform Step 5.

The flowchart of IFOA is shown in Fig. 8.

5 Case Optimization Results and Analysis
5.1 Optimization Case. The cooling source of the experimen-

tal equipment of the central air-conditioning system mentioned in
this paper is a rotor compressor with a cooling capacity of
5400 W, which has a rated power of 1700 W and a COP of 3.16.
The chilled water and cooling water pumps are each equipped
with a variable frequency pump with a rated power of 550 W and
a rated flowrate of 5. And a cross-flow cooling tower with a rated
power of 180 W is equipped.

5.2 Energy Consumption Model Parameter Identification.
Due to the long-term operation of the system, resulting in the
actual characteristics of the system equipment is not the same as
the factory, therefore, through the collected data of this equipment
chiller energy consumption, chilled water supply temperature,
cooling water supply temperature, chilled water pump speed ratio,
chilled water flowrate, chilled water pump energy consumption,
etc., the least squares method is used to identify the parameters of
the central air-conditioning chilled water system energy consump-
tion model established in Sec. 3, and the identified performance
parameters are shown in Table 2.
In order to verify the accuracy of the chilled water system equip-

ment energy consumption model obtained by identification, 30 dif-
ferent sets of operating data were selected from the collected system
operating data, and the energy consumption of the system under
each working condition was calculated using the model and com-
pared with the actual energy consumption of the equipment, and
the actual and calculated energy consumption scatter diagrams of
chilled water pumps and chillers were drawn as shown in Fig. 9,
and the performance indexes of the model were also calculated as
shown in Table 3, from which it can be seen that R2 of chiller
and chilled water pump are 0.9451 and 0.9279 respectively,
which are close to 1. Therefore, the energy consumption model
can be used for energy-saving optimization of the chilled water
system.

5.3 Simulation Results. In this section, 30 sets of actual
working conditions are selected and optimized by simulation
using MATLAB 2017A. The actual load demand corresponding to
each working condition is shown in Table 4. It can be seen that

Table 2 Chilled water system equipment performance
parameters

Chillers Chilled water pump

Parameters Numerical value Parameters Numerical value

a1 3.9973 a2 0.4207
b1 −2.1201 b2 1.7010
c1 0.4953 c2 −7.2529
d1 0.0647 d2 9.1720
e1 0.0011
f1 −0.041

Fig. 9 Comparison of actual and calculated energy consumption of equipment: (a) chiller and (b) chilled water pump
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the system load changes within the design load, and if various
equipment cannot be dynamically adjusted with the change in
load demand, it will lead to inefficient equipment operation There-
fore, it is very necessary to optimize the operating parameters of the
system equipment Considering that the control variables need to

satisfy easy adjustment and high correlation with chilled water
system equipment energy consumption, the chilled water supply
temperature and the speed ratio of chilled water pump are used as
the optimized control variables for this optimization problem in
this paper. The parameter settings for the energy-saving optimiza-
tion of the central air-conditioning chilled water system based on
IFOA are shown in Table 4 [25].
Figure 10 shows the convergence curve of system energy con-

sumption in the process of optimizing the operating parameters of
the chilled water system using IFOA with the chiller’s cooling
capacity of 4000 W as an example. As can be seen from Fig. 10,
the optimization of the chilled water system energy consumption

Table 4 Optimized parameter settings for IFOA

Parameters Numerical value Parameters Numerical value

Tchwr 15 °C β 1.05
Tcws 32 °C R 1
Tchwsmin 5 °C q 6
Tchwsmax 15 °C z 8
Sizepop 100 δ 10e−05
Maxgen 300 σ2 0.01
α 0.95

Fig. 10 Minimum consumption iteration curve for Q=4000 W

Table 5 Comparison of energy consumption before and after
optimization of 30 sampling points

Sampling
points

Cold
load
(W)

Actual
power
(W)

Optimized
power (W)

Parameters
Energy
saving
(W)

Tchws
(°C) rchw

1 3240.7 1635.8 1580.7 5.92 0.72 55.14
2 3178.5 1643.2 1574.8 6.28 0.7 68.48
3 2861.3 1693.7 1608.7 5.9 0.7 85.05
4 2947.1 1683.7 1589.7 5.93 0.8 94.01
5 3206.6 1665.3 1582.4 7.75 0.76 82.95
6 2960.8 1659.9 1588.7 5.14 0.7 71.21
7 3015.2 1675.4 1580.5 6.48 0.73 94.99
8 3024 1705.3 1579 5.32 0.73 126.34
9 3037.8 1689.7 1579.1 6.82 0.71 110.66
10 3045.9 1677.6 1576.6 5.37 0.72 101.09
11 3092.1 1680.5 1575.7 5.84 0.79 104.8
12 3097.1 1705.97 1576.2 5.34 0.73 129.77
13 3103.1 1735 1574.7 5.58 0.73 160.34
14 3103.6 1708 1574.6 6.23 0.81 133.49
15 3103.6 1706 1575.6 5.30 0.75 130.43
16 3112.5 1704.4 1575.4 6.75 0.75 129.09
17 3118.5 1686.8 1574.3 6.04 0.74 112.54
18 3122.8 1692.4 1574.6 5.63 0.71 117.83
19 3130.6 1738 1573.2 5.00 0.7 164.88
20 3162.5 1751.9 1575.3 5.90 0.7 176.62
21 3168.5 1775.8 1574.5 5.56 0.72 201.36
22 3176.6 1770.2 1575.8 5.05 0.75 194.49
23 3207.5 1819.3 1579.9 5.19 0.78 239.49
24 3166.3 1777.8 1573.9 5.02 0.7 203.92
25 3153.1 1764.8 1575.1 5.00 0.73 189.75
26 3026.6 1722.1 1579.1 5.45 0.71 143.09
27 2861.3 1770.2 1608.7 5.11 0.73 161.51
28 2947.1 1744 1590.4 6.25 0.71 153.63
29 2960.8 1717.5 1588.1 5.25 0.86 129.46
30 3026.6 1764.5 1578.4 5.29 0.7 186.17

Table 3 Performance indicators for identification of equipment
parameters

Equipment MAE MSE RMSE R2

Chillers 21.3 7.2758e−01 27 0.9451
Chilled water pump 8.3 1.0416e−01 2 0.9279

Table 6 Energy consumption and parameter settings for each system at different cooling capacities

Chiller load

IFOA FOA PSO SCA

Power (W) Parameter Value Power (W) Parameter Value Power (W) Parameter Value Power (W) Parameter Value

40% 1768.3 Tchws 11.27 1769.7 Tchws 11.71 1770.8 Tchws 11.90 2071.6 Tchws 11.89
rchw 0.73 rchw 0.72 rchw 0.75 rchw 0.8

50% 1531.1 Tchws 6.44 1533.5 Tchws 8.4 1533.9 Tchws 8.19 1753.7 Tchws 5.31
rchw 0.73 rchw 0.71 rchw 0.82 rchw 0.75

60% 1455 Tchws 5.29 1456.7 Tchws 5.65 1456.4 Tchws 5.14 1689.8 Tchws 5.01
rchw 0.74 rchw 0.71 rchw 0.77 rchw 0.75

70% 1656.7 Tchws 5.43 1660.1 Tchws 5.99 1659.2 Tchws 5.11 1903.4 Tchws 5.02
rchw 0.75 rchw 0.75 rchw 0.72 rchw 0.77

80% 2146.9 Tchws 5.31 2150.6 Tchws 6.41 2149.9 Tchws 5.17 2405.3 Tchws 5.43
rchw 0.75 rchw 0.84 rchw 0.75 rchw 0.80

90% 2925.4 Tchws 5.19 2929.2 Tchws 5.51 2928.9 Tchws 5.04 3189.1 Tchws 5.22
rchw 0.76 rchw 0.71 rchw 0.78 rchw 0.83
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by IFOA has a fast speed, and the lowest value of the chilled
water system operating energy consumption is obtained when the
number of iterations reaches about 40, at which the lowest value
of the chilled water system operating energy consumption is
1822.4 W. The corresponding parameter values include Tchws=
5.56, rchw= 0.71.

The optimization results for 30 sets of working conditions are
shown in Table 5. In order to better analyze the optimization
effect, the overall energy consumption before and after the optimi-
zation of these 30 groups of actual working conditions was com-
pared. As shown in Table 5, the optimized energy consumption
in all 30 groups of conditions was significantly reduced, and the

Fig. 11 Iteration curve of each algorithm under different loads: (a) 40% load rate, (b) 50% load rate, (c) 60% load rate, (d ) 70%
load rate, (e) 80% load rate, and ( f ) 90% load rate
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calculated energy consumption of the optimized chilled water
system was 7.9% on average compared with that before
optimization.

5.4 Experimental Platform Verification. From Sec. 5.3, it
can be seen that the energy-saving effect of the IFOA-based
chilled water system optimization method is obvious, but the
above experimental results are based on computer simulations,
which is not very comprehensive to judge the application effect
of the method in the actual system. In order to further verify the per-
formance of the IFOA algorithm in the actual system, experiments
were conducted on the experimental platform of the central air-
conditioning system mentioned in Sec. 2. Six typical operating con-
ditions of 40%, 50%, 60%, 70%, 80%, and 90% of the system
design load were selected to analyze the actual performance of
IFOA in three aspects: actual optimization results, convergence
and robustness, and to compare with particle swarm optimization
algorithm (PSO) [30], the sine cosine optimization algorithm
(SCA) [31] and FOA. To ensure the fairness of the comparison
results, the common parameters (population size, maximum
number of iterations, etc.) of each algorithm are kept consistent.
Experimental platform verification.

5.5 Analysis of Experimental Results. First, this experimen-
tal platform combines PSO, SCA, and FOA algorithms to obtain
optimized operating parameters and optimization results as shown

in Table 6, compared with PSO, SCA, and FOA, IFOA algorithm
has a better energy-saving effect.
Since IFOA is improved on the basis of FOA algorithm, in order

to better compare and verify the optimization effect of IFOA algo-
rithm for actual chilled water system, in addition to PSO and SCA
algorithms, the comparison analysis with FOA algorithm was added
from two aspects of convergence and robustness. From the conver-
gence curves of the four algorithms under six load rate conditions in
Fig. 11, it can be seen that IFOA can optimize the system faster than
the other three algorithms. Therefore, the IFOA algorithm has better
convergence in practical applications.
Finally, the maximum, minimum, and average values of the opti-

mization results are shown in Fig. 12 for 30 independent experiments
using the four algorithms for the above six conditions. The maxi-
mum, minimum, and average values of the optimization results
obtained by IFOA are better than those of PSO, SCA, and FOA.
Meanwhile, the difference between the maximum and minimum
values obtained by the IFOA algorithm is the smallest among the
four algorithms. Therefore, the IFOA algorithmhas good robustness.

6 Conclusion
This paper establishes an energy consumption model for the

energy-using equipment of the chilled water subsystem of central
air conditioning and uses the least squares method to identify it

Fig. 12 Result distribution of 30 independent runs of PSO, SCA, and IFOA under different
loads: (a) 40% load rate, (b) 50% load rate, (c) 60% load rate, (d ) 70% load rate, (e) 80% load
rate, and (f ) 90% load rate
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and obtain the model parameters of the chilled water subsystem.
Since the traditional FOA is easy to fall into local optimum and is
not very stable, an improved fruit fly optimization algorithm is pro-
posed in this paper to improve the performance of FOA. The main
improvements to the FOA are as follows.

(1) Expanding the 2-D position coordinates of individual fruit
flies to 3-D space increases the search space of the fruit fly
population.

(2) Introduce cat mapping to generate the initial population of
the fruit fly population to reduce the effect of uneven distri-
bution of the initial population and improve the convergence
speed of the algorithm.

(3) Establish a dynamic search step update strategy to balance
the global search capability and local search capability of
the algorithm.

(4) Calculate the value of the flavor concentration variance of the
fruit fly population, determine whether the population is
trapped in a local optimum, and help the individuals
trapped in a local optimum to jump out with Arnold Cat Map.

The energy-saving optimization of a central air-conditioning
chilled water system was performed in MATLAB 2017A using the
IFOA algorithm. The results show that the optimization of the oper-
ating parameters of the chilled water system using IFOA can reduce
the operating energy consumption of the system with an energy-
saving rate of 7.9%. In addition, the optimization capability, con-
vergence, and robustness of IFOA are verified by comparing it
with FOA, PSO, and SCA algorithms for different working condi-
tions. The results show that the IFOA-based chilled water energy
efficiency optimization method can provide a feasible approach
for the energy efficiency optimization of central air-conditioning
systems.
In this paper, the chilled water system of a central air-

conditioning system is studied for energy-saving optimization, but
there are some shortcomings due to the limitation of research con-
ditions and other factors.

(1) This paper is based on the previous simplified water system
equipment energy consumption model, and the equipment
energy consumption mathematical model still has some
errors. In the future scientific research and practice, it is nec-
essary to further deepen the improvement, in order to establish
a closer to the actual situation of the equipment energy con-
sumption mathematical model.

(2) We only studied the chilled water system alone, while the
whole air-conditioning system consists of chilled water
system, cooling water system, and air system together.
Therefore, to achieve better energy savings, the entire air-
conditioning system needs to be added to the optimization
model.

(3) The central air-conditioning system we studied is based on
one experimental equipment in the laboratory, and due to
some constraints, the scale of this group of experimental
equipment is relatively small, and the parallel operation of
the chiller and other equipment cannot be studied. In subse-
quent studies, we can consider larger-scale central air-
conditioning systems and include the start/stop and number
of units control of energy-consuming equipment in the opti-
mization variables, making the optimization model have a
wider application range.
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Nomenclature
Variables

p = curve decay degree adjustment factor
q = curve decay degree adjustment factor
u = control parameter
v = control parameter
x = unknown number
y = unknown number
z = unknown number
P = energy consumption of chilled water system
Q = chiller cooling capacity
R = search step
S = smell concentration judgment value
W = Watt
X = X coordinate of the individual
Y = Y coordinate of the individual
Z = Z coordinate of the individual

cwater = specific heat capacity of water
mchw = actual flowrate of the chilled water pump
rchw = chilled water pump speed ratio

Pchiller = energy consumption of the chiller
Ppump = energy consumption of the chilled water

pump
Tchwr = return temperature of chilled water
Tchws = supply temperature of chilled water

Tchwsmax = upper limit of chilled water supply
temperature

Tchwsmin = lower limit of chilled water supply
temperature

Tcws = supply temperature of cooling water
a1, b1, c1, d1, e1, f1 = performance parameters of chiller

a2, b2, c2, d2 = performance parameters of chilled water
pump

bestIndex = individual with minimum smell
concentration

bestSmell = minimum smell concentration
Dist = the distance between the individual and the

coordinate origin
Function = fitness function

gen = current iteration number
Maxgen = maximum number of iterations

RandomValue = random flying distance
Rate = rate of change of concentration difference

Sizepop = fruit fly population size
Smell = smell concentration

Smellbest = historical optimal flavor concentration
values

α = the lower boundary of the stable change
interval

β = the upper boundary of the stable change
interval

δ = current number of iterations
λ = denominator regulator
σ2 = fruit fly population smell concentration

variance value
°C = degree celsius

Abbreviations

ACO = ant colony algorithm
AFSA = artificial fish swarm algorithm
CAT = Arnold Cat Map
FOA = fruit fly optimization algorithm
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GA = genetic algorithm
IA = immune algorithm

IFOA = improved fruit fly optimization algorithm
MAE = average absolute error
MSE = mean square error

PCA-ANN = principal component analysis-artificial
neural network

PSO = particle swarm optimization
RMSE = root mean square error

R2 = decision factor
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